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ABSTRACT— Recently, we introduced the Mth
nonlinear coherent state (MNCS), obtained by
applying M times the number operator on the
nonlinear coherent states (NCSs). Studying the
interaction of such states with an atom is of great
importance due to their notable nonclassical
features. In this study, relying on the f-deformed
Jaynes-Cummings model, we investigate the
interaction between a two-level atom and a
single-mode field, which is organized to be a
MNCS. For this, the time evolution of population
inversion and the nonclassical properties of the
field, including the Mandel g-parameter, normal
squeezing, and amplitude-squared squeezing,
across various parameters and values of M is
studied. It is found that in the presence of the
intensity-dependent coupling and Kerr medium
in the resonance condition, the nonclassical
feature of squeezing occurs periodically during
the interaction. Furthermore, sub-Poissonian
photon statistics is also evident as a significant
nonclassical feature. Finally, by measuring the
field entropy for all the investigated cases, we
examine the entanglement dynamics and
determine  the  degree of  atom-field
entanglement.  Additionally, a general
comparison between the interaction of a two-
level atom with the Mth coherent states (MCSs)
and the interaction of a two-level atom with the
MNCSs is presented.

KEYWORDS: F-Deformed Jaynes—Cummings,
Model Mth nonlinear coherent states,
Nonclassical properties, Quantum
entanglement.

95

|.INTRODUCTION

The Jaynes-Cummings model (JCM) [1] is
recognized as one of the most effective and
comprehensive models in quantum optics. This
model demonstrates the quantum behavior of
the interaction between a two-level atom within
a cavity and a single-mode electromagnetic
field. Because of its importance in quantum
optics and lasers, the JCM model has been
extensively  examined theoretically and
experimentally by numerous authors over the
past 50 years [2]-[4]. The time evolution of the
system has been realized to be significantly
dependent on the initial electromagnetic field
statistical features. For example, it was found
that if the initial radiation field is the standard
coherent state (CS), quantum theory anticipates
the collapses and revivals phenomenon for
atomic inversion [5]-[7]. In addition, it was
found that the JCM also shows the dynamics of
the other quantum phenomena, such as the anti-
bunching effect, field squeezing, and atom-field
entanglement [8]-[10].

Because the JCM has been considered the
standard model in quantum optics, the
generalization of this model has been of interest
to researchers in various ways, and many
articles have extended this model using various
methods. For example, the Tavis-Cummings
model [11] is the generalization of the JCM that
takes into account the interaction between a set
of two-level atoms and a field. Furthermore,
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there have been many models that investigate
the field evolution in the existence of a Kerr-
like medium by combining nonlinear
parameters in terms of the photon number
operator [12]-[14]. In addition, other extensions
modify the dynamics equations, including the
use of a two-level atom moving through an
optical cavity length [15], [16], the fractional
Schrodinger equation [17], [18], and a time-
dependent field [19]. Also, previous studies
have explored the quantum properties of the
interaction between multi-level atoms and a
single-mode electromagnetic field within a
Kerr-like medium with an intensity-dependent
coupling [20]-[25].

On the other hand, the standard JCM employs
various fields or quantum states to explore
atom-field interactions. One of these states is
the Fock state, also known as the number state
[7]. It was found that when the initial field is in
a Fock state, the system displays Rabi
oscillations in the atomic inversion, which
represents the periodic exchange of energy
between the atom and the field. The coherent
state (CS) is another quantum state widely used
in the JCM and its extensions [26]. Applying
the CSs shows many patterns of revival and
collapse phenomena that depend on the average
number of photons. Among the other field
modes applied to the standard JCM, we can
refer to the generalizations of the standard CSs.
One of these generalizations is called nonlinear
coherent states (NCSs) [27]. These kinds of
states were extended by Manko et al. by using
the concept of a generalized f-oscillator [28].
They performed this extension by using the
definition of the generalized annihilation

operator, denoted as A =4&f (1), where f (1)
represents an operator-valued nonlinearity
function in terms of the number operator

A =a'd [28], [29]. Studies have shown that the
NCSs, which are specifically characterized as

the eigenstates of A , have remarkably
nonclassical features versus the normal CSs
[30]- [32]. Also, it has been shown that the
“superposition of the nonlinear coherent states”
generated by expanding the standard
superposed states have specific nonclassical
features, which are absent in their particular
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components [33]-[35]. Furthermore, by using
the notion of the f-oscillator, a specific type of
nonlinear JCM (NJCM) has been introduced
known as f-deformed JCM, as the
generalization of the standard JCM. This
generalization demonstrates the interaction
between a single mode of the electromagnetic
field with a two-level atom in the presence of a
nonlinear Kerr-like medium [36]. The primary
benefit of this model is that, by considering the
medium with a f-deformed oscillator rather than
a regular harmonic oscillator, it is possible to
analyze the development and interaction of
NCSs with a two-level atom. The quantum
properties of the interaction of a superposition
of the NCSs with a two-level atom in a Kerr-
like medium with intensity-dependent coupling
have been studied [37]. Moreover, this
interaction system has been potentially
considered as an approach to produce a special
kind of nonclassical states [38].

In recent years, a new state known as the “near
coherent state” has been introduced and
extended [39]- [41]. These states represent the
particular superposition of two nearly equal
CSs. Lately, based on the concept of the near-
CSs, Othman A proposed a new state named the
Mth coherent state (MCS) [42]. These states are
called the MCSs because they are achieved by
applying M times the number operator to the
CSs. The MCSs exhibit important nonclassical
features, such as sub-Poissonian statistics and
squeezing, especially when they have a high
mean photon number. In the other paper, the
interaction between a single-mode
electromagnetic field with a two-level atom in
a Kerr-like medium and intensity-dependent
coupling has been studied by assuming the
initial field as the MCSs [43]. Recently, we
have introduced new states using the concepts
of the NCSs and the MCSs. These states, which
are termed as Mth nonlinear coherent states
(MNCSs), are obtained by applying M times the
number operator to the NCSs [44]. They can
also be considered as the result of adding and
removing photons M times from a nonlinear
coherent state. It was found that these states
have significant nonclassical features such as
sub-Poissonian photon statistics and amplitude
squeezing.  Therefore, investigating the
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interaction of such states with a two-level atom
and multi-level atoms can be interesting from a
physical perspective.

The main point of this article is to study the
interaction between a two-level atom within a
lossless cavity and a  single-mode
electromagnetic field. This investigation is
done in the presence of intensity-dependent
coupling and a nonlinear Kerr medium. While
dissipation is important in our problem, to gain
the properties of the system, we first analyze the
ideal situation in which no dissipation occurs.
For this purpose, in section Il, we describe this
interaction system in the framework of the f-
deformed JCM, where the initial radiation field
is prepared to be the MNCSs. In section IlI, we
study the atomic inversion temporal evolution
of the interaction system for different cases.
Next, in section IV, we analyze the dynamics of
the field among the interaction by investigating
the nonclassical properties like sub-Poissonian
statistics, normal squeezing, and amplitude-
squared squeezing of the radiation field. As an
important feature of the quantum systems, the
atom-field entanglement has been perused in
section V by considering the time evolution of
the field entropy. Finally, the discussion and
results are presented in section VI.

Il. INTERACTION BETWEEN A TWO-
LEVEL ATOM AND AN MTH NONLINEAR
COHERENT STATE

We begin by presenting the standard JCM [1],
which is acknowledged as one of the most
fundamental and analytical atom-field
interaction models in quantum optics. It
provides a clear and insightful framework for
understanding the interaction between a single-
mode electromagnetic field and a two-level
atom within an ideal and lossless cavity. The
Hamiltonian governing this interaction, derived
under the rotating wave approximation and
within the dipole approximation, is expressed
as (h=c=1):
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In this equation, the first two phrases
correspond to the operators of energy of the free
electromagnetic field and the two-level atom
when no interaction is present. On the other
hand, the third term represents the interaction
between atom-field, describing the dynamics of
the energy exchange between the field and the
atom. Additionally, @ represents frequency of
the atomic transition, o denotes the field
frequency, the operators 4 and &' are
responsible for creating and annihilating
photons with the commutation relation

[4,4"]1=1 and A shows the coupling constant.
Please note that the atomic operators are
&, =le)el|-lg){gl , &,=le}g| and

6_=|g)e| with [J,,6,]=+26, and

[6.,6.]=6, . We assume that |e) and |g),

respectively, are the atom excited and ground
states. On the other hand, the f-deformed JCM
Hamiltonian is expressed as follows by using
the generalized annihilation and creation
operators:

Fue =hoA A+~ hod, +12(5, A+ AG.), ()

where the operators & and 4" in Eq. (1) have
been substituted with the generalized operators

A and A" defined as [28]:

.. ROV ©)
At =f (n)ad" =4 (A +1),

with

[ALA|=(f+D)f *(A+1)-Af *(A). (@)

It is worth mentioning that Eq. (2) consists of
three terms: the first one represents the
transformed free field Hamiltonian, the second
one represents the atom energy operator, and
the last term represents the atom-field
interaction [45], [46]. The atom-field coupling
in the interaction part of the Hamiltonian
becomes intensity-dependent due to the
nonlinearity of the function f (7). Here, f (A)

is assumed to be a real function. The principal
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distinction between Eq. (1) and Eq. (2), which
represent different physical structures, are
found in the nonlinearity of the deformed
function f (A). This indicates that the choice of
f (A) can significantly change the physical
characteristics of the system, potentially
resulting in unique nonlinear behaviors in the
atom-field interaction. In this study we use the
following nonlinearity function to obtain
specific physical results [31], [37]:

F(A) =, [1- £ (1-A2). (5)

In this equation, y shows the dispersive part of
the third-order nonlinearity of the Kerr medium
(0< y<<wv)and k >1. It is worth noting that,
applying f (1) demonstrated in Eq. (5) with
k =2 as a specific instance, the NJCM (Eg.
(2)) can be utilized to describe a system in
which a two-level atom surrounded by a Kerr
medium. Meanwhile, the properties of the
applied field are modified, because of a
nonlinear intensity-dependent coupling
between the atom and the field that results from
the existence of the medium [47].

There are different approaches to solving the f-
deformed JCM. For example, the time-
dependent Schrodinger equation method and
the density operator approach have been
presented in [36] and [37] respectively. In the
interaction picture, the Hamiltonian in Eq. (2)
becomes:

H, =ni[ 6. e A+ Ale s |, (6)
where Qﬁza)—u[ﬁi,,&q is a generalized
detuning.

The wave function |y) at each time t is

expressed as an expansion in terms of the states
le,n), and |g,n +1) as below:

v ©) =26 (Aa0]9.n+2)+B,Oe.n), @)
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in which the values A and B represent the
probability amplitudes and q, denotes the

amplitude of the state |[n). The probability

amplitudes A, ,(t) and B, (t) are obtained as

follows by solving the Schrddinger equation
within the interaction:

—2iAn+1f (n +1)

)

o sm( 5 je ,(8)
Ot iQ . (D)

Bn(t):{cos( 5 ] o sm( 5 ﬂe . (9

In these equations, d, =,/Q? +4A(n +1)f *(n +1)
represents a generalized Rabi frequency. To
obtain the specific physical properties of
interest, we must only determine the
distribution of the initial field photon number

g,|° . We considered the Mth nonlinear

coherent state (MNCSs) as the applied field in
this interaction model in the following. These
states are defined by applying the number
operator M times to the NCSs as below [44]:

A.(t)=

)=NIS
e =Mt
where f (n)!=f (O)f (2)f (3)... and f (0)!=1
[28], [34]. In addition, the normalization

coefficient N/, is determined from the
normalization condition as follows [44]:
“ N M |a|2n

Ny = {Z !]M.

[ n ()

Based on the concept of the MNCSs, when M=0
and f (1) =1, the coherent states are obtained

and by choosing M=0 when we have f (1), the
NCSs are gained. Furthermore, for f (A1) =1
and different M values, the MCSs are derived.

Using Eqg. (10), the mean number of the photons
is:
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(i, =Ni S 12

For a specific value of ¢, it has been observed
that the MNCSs photon distribution function is
the same as a Poissonian distribution but with a
shift that depends on M. To ensure that all the
photonic distributions of the various MNCSs
have an identical position, they should be
centered at one position. This alignment is
achieved using the computational methods
outlined in [44]. As we mentioned in the
definition of the MNCSs, we replace the
parameter of a with o', which is defined as

follows:

ay =exp %[V/(MZ +1)+

(1 (|af) f’(a|2)+1)}—%}em.

where f(|a|2) represents the deformed

(13)

function, f’(|a|2) denotes the first derivative

of the deformed function, & displays the
coherent parameter phase, and
w(x)=T"(x)/T(x) is the digamma function.
It was found that for a given «, the NCSs and
the MNCSs produce nearly an equal mean
number of photons. To understand this clearly,
please look at Table 1, which shows that the
various amounts of M for the same « have
approximately identical mean photon numbers,
but the o' values have significant differences.

In this study, to investigate the interaction
between a two-level atom and an MNCS, we
generally use M =0, 1, 10, 50, and 100, as
given in Table 1. We will initially consider the
field to be an MNCS, where the amplitude of
the applied field is obtained as follows:

w HZM‘ M

(04
g, =| >’ :

I f ()]

1
2n _E nM (aM )n

o] (14)
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In addition, in all numerical and analytical
computations, we consider that the amounts of

Q. , ®,, and y are scaled with the coupling
constant A [37], [43].

Table 1. The table shows the selected values of
Mwith a steady la. We observe that the mean
number of photons from Eg. (12) is almost

conserved, and the value of a,';" from Eq. (13) with
parameters y =041, A1=0.003, v=1, and k=2
has a significant variation.

M. a ()
0 5 5.05637 24.827
1 5 4.85811 24.876
10 5 3.38939 25.0286
50 5 0.684305  25.0466
100 5 0.0926107 25.0311

111.EVOLUTION OF ATOMIC INVERSION

The atomic inversion which is the difference in
probability between an excited state of the atom
and its ground state plays a significant role in
atom-field interactions. It has been found that
atomic inversion is particularly sensitive to the
statistical characteristics of the applied field. If
the primary electromagnetic field is in a CS, the
collapse and revival phenomena will occur as
completely quantum mechanical properties, as
previously  confirmed by experimental
observation [6]. Investigating the collapse and
the revival duration of fluctuations in the
atomic inversion is a simple technique to gain
useful knowledge of the atom-field interaction
systems. By considering Eq. (7), the atomic
inversion would be obtained as follows:

W ()=l

-0

B, (1) ~|A,.. (t)f). (15)

Inserting Eq. (8) and Eqg. (9) in Eq. (15) with
k =2 and v =1, would result in:

) ) QZ
w-3 faf| 5
"~ (16)
42 (n+1)(1+ xn)

CDZ

n

cos(cbnt)},
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where Q =A-2yn , and A=w-v is the
atom-field detuning.

The time evolution of Eq. (16), in terms of the
scaled time 7 =4t for the applied field defined
in Eq. (14), is plotted in Fig. 1. For various
parameters and different values of M, we notice
that the behavior of the population inversion of
our system with an MNCS field is similar to
that of a system with a general NCS field. We
can observe that the position of the peaks is
essentially preserved. As displayed in Figs. 1d,
e, and f, the closest and most similar case to the
CSs (Fig. 1a) and the NCSs (Figs. 1b and c) is
for M=1 (blue curves), and we named this case
as first NCS. According to these figures, we can
hardly notice the differences between the
MNCSs and the NCSs. Meanwhile, these
differences become more apparent as the value
of M increases, for example, when M=50 and
M=100.

The first column of Fig. 1 indicates the linear
state (the MCSs) when y =0 and A=0. We

can see that the discrete packet positions are
almost identical. These packets show the
phenomenon of atomic revival and collapse
[48], [49]. Recall that the collapse, which
represents the destructive interference between
the probability amplitudes, occurs when the
fluctuation  packets reach zero. Also,
constructive interference happens during times
of revival. Furthermore, we observe that as the
value of M increases, the number of revivals
and collapses increases (see Figs. 1(j) and (m)).

In the middle and last column of Fig. 1, we have
shown the atomic inversion temporal evolution
in the presence of the nonlinear Kerr medium
with set values of M for resonance (A=0)
and nonresonance (A =0) cases. We observe
that fluctuations of the atomic inversion are
more periodic in the resonance case than in the
nonresonance case. The structure of these
fluctuations in the case of resonance is also
completely different from the linear state. The
main reason for this difference is the effect of
the parameter y on the generalized Rabi
frequency in the f-deformed JCM. In addition,
for the case A=0, we can see that raising the
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value of M increases the revival time (see Figs.
1(k) and 1(n)). Moreover, compared to the
MCSs, the MNCSs in the resonance condition
are usually more periodic. This is even though
for the case A =0, the growth in M enhances
the collapse time, which means that the
collapses and revivals become more obvious
(see Fig. 1l and Fig. 10). Also, raising M leads
to an expansion in the fluctuation range and the
number of revivals and collapses, while for
A =0, the range and the number of packets are
almost constant.

I\V. THE DYNAMICS OF FIELD

A. Statistical features of the field

The study of Mandel g-parameter [50] is an
extremely efficient method for describing the
statistical characteristics of a state. This
parameter defines the photon distribution
normalized variance and is determined as
below:

(17)

where <(Aﬁ)2>=<ﬁ2>—<ﬁ>2. It is important to

note that, based on the amount of the Mandel
g-parameter, the field could have Poissonian
statistics when g=0 super-Poissonian statistics
when g>0 and sub-Poissonian statistics when
g<0. In addition, the field is nonclassical if it
has sub-Poissonian photon statistics [51]. Using
the wave function of Eq. (7), we can easily
obtain the expected values as follows:

)= Slal | ne[1- S o (%],

(19)
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=

with y=0.44, 4=0.003 and A=0.

The g-parameter as a function of the scaled
time z is displayed in Fig. 2. We can observe

0.5

0.0

-0.5

1.0°

0.5

0.0

-0.5

-1.0!

m)

Fig. 1. The evolution of the atomic inversion W (t) against scaled time z. The y-axis represents the atomic inversion,

and the x-axis shows the scaled time 7 = At. The black curves are for M=0, the blue curves are for M=1, the red
curves are for M=10, the orange curves are for M=50, and the purple curves are for M=100. The first column from
the left is for the linear state (the MCSs) with y = A =0. The middle column is for the nonlinear states (the MNCSs)

Finally, the last column is for the nonlinear states (the MNCSs) with
7=0424, 4=0.003,and A=0.03. All figures are with |« |=5.
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that the first row is the magnified image that
displays all the MNCSs, while the second row
IS given as an example to show more details of
one specific MNCS. At first glance, we can see
that the g-parameter is negative for all the
investigated values. This implies that the
cavity field photon statistics are sub-
Poissonian throughout the entire interaction
period, which indicates a significant
nonclassical feature of the interaction system.
Also, we observe that even though each
column has distinct » and A values, the
g-parameter for every given value of M

-0.2
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somehow oscillates close to its main amount.
In other words, for a specific M, the center of
the oscillations is approximately stable for
various physical parameters. The first column
is related to the condition of y =0,and A=0
(f (n)=1). We can see that in this case, by
increasing the value of M, the place of the
fluctuations is nearly conserved, while the
width and the height of the fluctuations reduce.
Furthermore, it is clear that, as M rises, the
value of the g-parameter becomes more
negative and the distribution of the photon
statistics becomes fully sub-Poissonian.

-0.4

0.0 # ¥ " m ¢ m 0.0
00 % —————————————— mem
| 0.2 -0.2

100

100

T 04 *—“—M o = fto e iemeptieieslimtieaniv

-0.6 06 0.6
-0.8 08 -0.8

. *& *>-» -4 e

0 20 40 60 80 100 0 10 20 30 40 50 0 20 40 60 80

T T T
@) (b) ©)
074 ~0.790" o
076 ' ~0.78
-0.795. _
078 0.79
(=2 o —
080 ~0.800 = -0.80
_0.82 -0.805! -081
| -0.82

~0.84 ~0.810
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T T T
(d) (e) U}

Fig. 2. The temporal evolution of the g-parameter against the scaled time. The y-axis represents the g-parameter, and the
x-axis shows the scaled time 7 = At. The black curves are for M=0, the blue curves are for M=1, the red curves are for
M=10, the orange curves are for M=50, and the purple curves are for M=100. The first column from the left is for the linear
case (the MCSs) with y =A=0. The middle column is for the nonlinear case (the MNCSs) with y =0.44, 4 =0.003
and A =0. Finally, the last column is for the nonlinear states (the MNCSs) with » =0.44, 4 =0.003,and A=0.03. All
figures are with | « |=5. The first row is for all the studied Ms. The second row is for the case when M=50 with more detail

from the first row.

The middle column in Fig. 2 is plotted for the
case where the primary field is nonlinear (the
MNCSs) with y =0.44 and A=0.We notice
that as M grows, the g-parameter becomes
more negative, similar to the pattern in the first
column. In addition, it is clear that the increase
of M leads to more decreases in the height and
width of the packets than in the case of
f (n) =1, while the oscillations become more

periodic. Also, we can see that the position of
the fluctuations is relatively preserved. Finally,

102

in the last column, we have plotted the
g-parameter for the initial field of the
interaction system in the nonresonance
situation with the values »=0.44 and

A=0.03. We observe that, over time of the
interaction, as the value of M grows, the
number of fluctuations increases while their
height reduces. In general, we can observe that
the fluctuations are more periodic in the
resonance case compared to the nonresonance
case. However, like in the previous cases in the
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nonresonance mode as the M value grows, the
g-parameter becomes more negative, and the
photon statistic is completely sub-Poissonian.

B. Normal Squeezing

The amplitude squeezing of the field is one of
the important nonclassical features that we
have investigated in this section. Reduced
fluctuations in one of the momentum or
position quadratures of the field exchanged
with increased fluctuations in the other
describe a squeezed state [7]. To obtain normal
squeezing, consider the Hermitian operators as
below:

X, =1(a+d')and Y, ==(a-4').  (20)

The uncertainty for the amplitude and phase
quadratures by the commutation relation

(XY ]=i/2is:

<(Ax” 1)2><(AY”1)2> >1/16. 21)

where, AX, and AY, respectively are

uncertainties in the quadratures of X', and Y.
Please notice that the normal squeezing occurs

when one of the inequalities (A)( )2 <1/4 or

AN\2
(AY) <1/4 |, is satisfied. Under these

conditions, normal squeezing parameters have
been determined for each of the operators as
follows [52]:

SO = 4<(A>21)2> 1&80= 4<(A\f1)2> _1. (22)

It is well known that when the value of the
squeezing parameter in XA1 or YA1 IS negative,
a quantum state is squeezed. Thus, using the
annihilation and creation operators of the
photon, the normal squeezing parameters can

be obtained using the following inequality
equations:

s =(a%)+(a”)+2(n)—((a) +(a")) <0, (23)

103

Vol. 18, No. 1, Winter-Spring, 2024

s =2(n)—(a%)—(a") +((8)~(a")) <0. (24)

To determine the amount of the normal
squeezing of the applied field, we calculate the
expectation values in Egs. (23) and (24) for the
proposed system. We notice that Eg. (18)

yields the expectation value for (ri), and (")

is achieved as below: (<aﬂr > = <ér >*):

R < . (n+r+1)!
(&)= ;qﬂqnﬂ |:A1+1A1+r+14 ,w
BB ,(n+r)!}.
n—n+r (n)!

Figure 3 displays the time evolution of the
normal squeezing function S for the values
considered in Fig. 2. In Fig. 3(a), with
¥ =A=0, it is clear that increasing the order
of the initial field M leads to the normal
squeezing in the quadrature XA1 in the specific
time intervals during the interaction time. It is
while, as the interaction progresses, the
squeezing gradually reduces and eventually
disappears. In addition, while raising the order
of the MNCSs to the value of M=50, the
squeezing depth also increases, while for
M=100, the squeezing depth is decreased.

(25)

The middle and last columns of Fig. 3
demonstrate the nonlinear case in the existence
of the Kerr medium and intensity-dependent
coupling. In the middle column, we have
plotted the time evolution of S when the

atom-field interaction is resonant. It has been
observed that the nonclassical feature of

normal squeezing in the quadrature XAl occurs

periodically at specific time intervals during
the interaction time. These periodic
fluctuations have a more regular and sinusoidal
shape due to the presence of . The MNCSs are
more squeezed than the MCSs, which is a
significant characteristic of the studied
interaction system. We can see that, as M is
raised to a specific value, the depth of the
valleys and degree of squeezing increase,
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similar to the linear state shown in the first
column. In the nonresonance case, as shown in
the last column, we see that the normal

squeezing in the quadrature X, happens in a
short period of time at the beginning of the

1.0 1 2.0/
15|
0.5 -
1.0/
=00 = 0.5
0.0|
0.5 .
-0.5
~1.0 ~1.0!
0 10 20 30 40 50 60 70 0
T
@
20
30
15
20
= e 10
10 s
0 0
0 50 100 150 200 0
T
(d)
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interaction. We also observe that similar to
previous cases, the squeezing degree increases
as M grows upto M =50. Moreover, unlike
the resonance case, the squeezing disappears
over time.

-0 e : -
00 02 04 06 08 L0 12

T T

(b) (©)
50/
40:
3():
“ )
10|
U:
0 60 80 100 0 s 10 15 20 25
T T
O M

Fig. 3. The same as in Fig. 2 but for the time evolution of the normal squeezing parameter S)El) .

C. Amplitude-squared squeezing

In this section, we study amplitude-squared
squeezing as another nonclassical feature in
the atom-field interaction. To study this

feature, the operators X , and Y',, which are
Hermitian defined as follows [53], [54]:

X, =%(az +a”) and Y, =%(a2 ~a"), (26)

with  [X,Y,]=i(21+1). In addition,
Heisenberg uncertainty relation for the

quadrature operators X , and Y, is specified
as follows:

(%) ){(av) )2 5l 28 +1)

The studied case holds the property of
amplitude-squared squeezing if either of the

(27)
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. A \2 1
circumstances <(AX ,) > < <ﬁ +E> or
<(AYA2 )2> < <ﬁ +%> is satisfied.

Now, by using the normalized parameters that
are expressed as follows:

50 = () =1 -
o
and using Eq. (26) we have:
S@ =
(a')+ (@) +2(?) —2(n) (&) + (a7)) (29)

30
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SY(Z) —

2(1°)-2() ()~ (") o (&) (6] @0

Equations (18), (19) and (25) give the
expectation values needed to determine the
amplitude-squared squeezing of the studied
system. Note that the state holds this feature if
the value of parameters S{* or S is less

than 0.

Figure 4 shows the time evolution of S for

the same parameters and selected values as
shown in Fig. 2. We can observe that the
amplitude-squared squeezing happens in all
the investigated cases as a nonclassical feature
of the interaction system in the quadrature

A

X, . In the linear case when f (n)=1, this

feature is seen in specific time intervals of
interaction.

Also, in the nonlinear case when A =0 (Fig.
4(b)), we see that the oscillations are periodic

5%
5

=]

S%

(=TS T "S- -

0 50 100 150 200 0

T

(d)

20

wn
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and the amplitude-squared squeezing occurs in
certain time intervals of the interaction.
Meanwhile, in the nonresonance case, when
A =0.03, we see this nonclassical feature in a
short duration at the beginning of the
interaction. Also, we observed that in all these
cases with the rise of M up to M=10, the degree
of squeezing increases, and for the large value
of M, the squeezing degree decreases. In
addition, by comparing Figs. 4(b) and 3(b), it
can be seen that the time interval of occurrence
of amplitude-squared squeezing is very close
to normal squeezing. However, the main

difference between S{? and S is the

frequency and period of the oscillations. In
amplitude-squared squeezing, the frequency of
the oscillations is almost twice that of normal
squeezing, and the time of the period of the
oscillations has nearly halved. Also, we can
see that the maximum value of this
nonclassical feature is when M=10, while this
value occurs in the normal squeezing when
M=50. Furthermore, we observe that when
M=100, the squeezing feature is completely
lost for the applied radiation field.

10 15 20 25 0.0 0.2 0.4 0.6 0.8
T T
(b) (c)
12
10
8
&6
4
2
0
40 60 80 100 0 20 40 60 80
T T
(e) ()

Fig. 4. The same as in Fig. 2 but for the time evolution of the amplitude-squared squeezing parameter SX(Z) .

V. FIELD ENTROPY

Quantum entanglement is a fundamental
characteristic of quantum systems, which acts
as a basis for quantum computing and offers
valuable applications in quantum information

105

science [55]-[57]. Within the framework of
cavity quantum electrodynamics (QED), the
interaction between atoms and fields offers a
straightforward approach to generating
guantum entangled states, that are essential for

100
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the progress of quantum information
processing systems [58]. There are many
approaches to measuring entanglement. One of
the typical methods to demonstrate the value of
entanglement is the temporal evolution of the
atom-field entropy [59]. It means that the
higher the entropy implies the greater the
amount of entanglement and inversely. One of
the most effective methods for calculating
entropy in quantum systems is using the Von
Neumann reduced entropy, which measures
the entropy of a system by focusing on its
reduced density matrix [60]. The entropies of
the field and the atom, as considered different
systems, are determined using the Von
Neumann entropy, defined as follows:

S e (1) =-Tr, (,3A(F) (1IN e (t)), (31)

where the subscript A(F) represents the atom
(field) and p, ., denotes the reduced density

operator that for the atom is expressed as
follows:

Pa(t)=Tr (P)=Tr ([w)(w ). (32)
In this study, |y) is given by Eq. (7), and the

components of the density matrix are obtained
as follows:

P plzj:
Pa P

30,0 AL a0 AL | (33)
n=0 n=0

o0

> a0,

n=0

B

2
o

0
* *
anqn+lAn+1Bn+l
n=0

We know that for a pure state where
Tr(p?)=1, the entropy must be zero. In
contrast, the entropy would no longer be zero
for a mixed state, where Tr(p°) <1. Taking

into account the Araki and Lieb theorem [61]
for quantum systems with two components,
like the atom-field interaction system the
triangle inequality limits the entropies as
follows:
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S-S ®)[<SO)<[S. ) +S M) (34

where S (t) represents the general entropy of

the combined atom and the field system at any
time t . As the atom-field system at first is
assumed to be within a pure state, it follows
that for any time t>0, the atom and the field
reduced  entropies are equal, i.e,
S,(t)=S-(t). Hence, the focus can be placed

on the evolution of the field entropy rather than
the entropy of the atom.

Phoenix and Knight demonstrated that the
reduced entropy of the Von Neumann could be
described in terms of the eigenvalues of the
reduced density matrix [10].  Thus, by
applying Eq. (32), the entropy is expressed as
follows:

Se :SA:_(§1In§1+§2In§2)1 (35)

in which ¢, and &, represent the eigenvalues
of p,, which are determined as follows:

1
¢ = E[pn TPt \/(pzz ~Pu )2 +4p1,05 }v (36)

and

1
¢ = §|:p11 TP~ \/(pzz ~Pu )2 +40,0n } (37)

Figure 5 illustrates the numerical results for the
time evolution of the Von Neumann reduced
entropy when the initial state of the cavity field
is an MNCS. The plots in the first row present
an overview of the curves for all values of M,
including those shown in the bottom rows
along with other MNCSs. The second row
focuses on the case M=0, while the third row
details the situation M=50. As mentioned in the
previous sections, the first column from the left
displays the entropy for the linear case when
=0 and A=0. The middle column and the

last column illustrate the temporal evolution of
the field reduced entropy for y =0.44, and
display the resonance and nonresonance cases,
respectively.


http://ijop.ir/article-1-581-en.html

[ Downloaded from ijop.ir on 2026-01-29 |

International Journal of Optics and Photonics (1JOP)

0.7
0.6
0.5
0.4

0.4

0.3

“ 0.3 “ 0.2
0.2 0.1
0.1
0.0 0.0
0 50 100 150 200 250 300 0 10
T
- @
0.7
0.6 0.4
0.5 03
04 .
“ 03 “ 0.2
0.2 0.1
0.1
0.0 0.0
0 50 100 150 200 250 300 0 10
T
(d)
0 i . . . . i . 030
0.6 0.25
0.3 0.20
04 01
“ 03 “
02 0.10
0.1 0.05
0.0 0.00
0 50 100 150 200 250 300 0 10
T
()]

(b)

O

Vol. 18, No. 1, Winter-Spring, 2024

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

S

30 40 50 0 20 40 60 80 100
T
()
0.7]
06!
05
0.4
“ 03]
0.2
01
0.0
30 40 50 0 20 40 60 80 100
T
()
0.7
0.6
0.5
“ 0.4
“ 03
0.2
0.1
0.0
30 40 50 0 20 40 60 80 100
T
(1)

Fig. 5. The temporal evolution of the field entropy against the scaled time 7 = At . The black curves are for the NCSs
or M=0, the blue curves are for M=1, the red curves are for M=10, the orange curves are for M=50, and the purple
curves are for M=100. The first column from the left is for the linear case (the MCSs) with y = A =0. The middle

column is for the nonlinear case (the MNCSs) with y =0.44, 42 =0.003 and A =0. Finally, the last column is for
the nonlinear case (the MNCSs) with » =0.44, 1 =0.003 and A =0.03. All figures are with |« |=5. The first row
is for all the studied Ms. The second and third rows are for the cases when M=0 and M=50, respectively, with more

detail from the first row.

It is clear that in the absence of the intensity-
dependent coupling and Kerr nonlinearity, the
time evolution of the field reduced entropy
shows a chaotic behavior (Fig. 5a). On the
other hand, when M=0, we observe that the
fluctuations decrease over time, and S;

approaches the semi-stable value more rapidly.
However, the chaotic behavior increases with
the rise of M. Hence, other M amounts need
more time to achieve a slightly lower semi-
stable value. In the nonlinear system under the
resonance condition, shown in the middle
column, the entropy behavior is completely
different from the linear system. In this case,
the evolution of the S. exhibits a nearly

regular behavior over the interaction time.
Also, in this case, the collapse and revival
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patterns occur as a nonclassical feature.
Moreover, it is observed that similar to the
linear case, growing the amount of M results
in a reduced degree of atom-field
entanglement. Also, the entropy of the field, or
its equivalent, the degree of entanglement, is
reduced in the presence of nonlinearity. In
addition, it is notable that the entropy of the
field becomes zero at specific times of the
interaction, which indicates the disappearance
of the entanglement. Notably, when the value
of the entropy nears zero, the atom resides in
either its lower or upper state, indicating a pure
state. Moreover, as it is clear from the figures
of the last column, in the nonlinear system in
nonresonant conditions, there is a chaotic
exhibit in the field entropy approximately the
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same as in the linear case. We can see that in
this case, the degree of the field entropy of the
interaction system is greater than that of the
nonlinear system when A =0, and as a result,
the atom-field entanglement is greater.
However, in this condition similarly to the
previous cases as the order of the applied field
increases, the amount of the field entropy
reduces.

It is notable that, the purity of the field
throughout the interaction is intrinsically
linked to its quantum statistical properties [62].
In reality, when the field displays sub-
Poissonian features, the field, and the atom can
experience a reversible process, returning to
their initial pure states at particular intervals
during the interaction. In general, the behavior
of the field entropy within this interaction
system can be thoroughly described by
considering the plots presented in Figs. 5 and
2. According to Fig. 2, we can see that in all
the studied cases for the MNCSs with a rising
value of M , the photon distribution of the
field is completely sub-Poissonian. As a result,
the field may approach the pure state almost
during the atomic inversion revival times,
which means that the degree of the entropy and
equivalently, the amount of the entanglement
will decrease or become zero.

V1. CONCLUSION

One of the most significant theoretical
achievements in quantum optics is the
development of a model that can determine the
nonclassical features of interactions between
atoms and fields. In this article, we study the
interaction between a single two-level atom
with a new class of nonlinear coherent state
which we have introduced in [44] in the
existence of an intensity-dependent coupling
and a Kerr medium. For this purpose, we use
the f-deformed Jaynes-Cummings model
(JCM). In this framework, by selecting a
suitable form of f (n) in Eqg. (5) with the
specific amount of k=2, the nonlinearity for
both the applied field and the atom-field
intensity-dependent  coupling has  been
guaranteed. In addition, the effects of the field
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order (M) on the dynamics of interaction have
been examined.

Regarding the interaction system with a two-
level atom, the first NCS (M=1) holds a unique
position among all MNCSs. Because for all
physical parameters examined, the first NCS
demonstrates nearly identical behavior to the
NCS. Additionally, this similarity in
dynamical behavior is anticipated for all small
values of M to be true, perhaps fewer than
M=10 but less specified.

In Section 11, the time evolution of the atomic
inversion for the proposed interaction system
has been studied. It was found that relatively
high amounts of M cause the system to become
more periodic and adjust the amplitude and
duration of the oscillations. On the other hand,
the chosen values for M and the measured
parameters make the oscillations broader or
thinner. We believe this tendency towards the
periodicity of revival and collapse phenomena
can be useful for some applications.

In Section IV, we have investigated the
nonclassical characteristics of the interaction
system under study including photon statistics,
normal squeezing, and amplitude-squared
squeezing. It was found that the g-parameter
temporal evolution for the selected values of
M in the presence and absence of the
nonlinear Kerr medium and intensity-
dependent coupling is completely a sub-
Poissonian statistic. Furthermore, as the
amount of M increases, the g-parameter
becomes more negative and gets closer to -1,
and the fluctuations become more periodic and
regular. Moreover, the study revealed that by
increasing the value of M up to a certain value,
the nonclassical features of the normal
squeezing and the amplitude-squared
sgueezing occur at certain time intervals in the

quadratures of X, and X ,. However, when

M becomes large, these nonclassical features
vanish entirely. Most importantly, it was
observed that for the interaction system with
the MNCSs in the presence of intensity-
dependent coupling and Kerr medium, the
temporal evolution of the normal and the
amplitude-squared squeezing are completely
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periodic in the resonance case. Compared to
the linear mode, it can be concluded that the
presence of y has caused a better occurrence of
these nonclassical features. In addition, the
growth of M up to a certain value increases the
depth of squeezing, while for a large value of
M, the amount of squeezing decreases. In
contrast, in the nonresonance situation, the
nonclassical properties of squeezing in the

quadratures of X, and X, occur in a brief

time at the start of the interaction. This means
that the existence of the detuning leads to a
decrease in squeezing as a nonclassical
characteristic.

Finally, in section V, to investigate the
guantum entanglement of the atom and the
field as a basic feature of quantum systems, we
have examined the temporal evolution of the
reduced entropy. We observed that when we
have a nonlinear Kerr-medium and intensity-
dependent coupling for resonance case, the
entropy level decreases, but when the detuning
is present, the entropy level increases. In all
studied cases, by raising the value of M | the
degree of entropy and, equivalently, the atom-
field entanglement were reduced to some
extent. In addition, in the nonlinear case, when
the atom and the field are in the resonance the
entropy of the field becomes zero at certain
times of the interaction, which indicates the
loss of the atom-field entanglement. In such a
situation, the atom is in one of the upper or
lower levels (the pure state). This is even
though in other investigated cases, the degree
of entropy approaches zero (not exact zero) at
certain times of interaction. In our proposed
system, we discovered an intriguing
correlation between the purity of the field and
its sub-Poissonian properties. Finally, it is
necessary to note that forf (n) =1, the results

obtained in this study are generally consistent
with the results of [44] when » =0.
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