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ABSTRACT— In this paper, the thick thermal
lens approximation is evaluated for a CTH:YAG
laser with a standard telescopic resonator. An
accurate relation between the thermal lensing
parameter and lens-like media factor is
proposed. Telescope adjustments were studied
based on the practical values of the focal length
of the thermal lens. The fundamental mode
volume is determined regarding the Hermit-
Gaussian theory, and the influence of the defocus
parameter is examined. The study emphasizes
the importance of considering both the
fundamental mode volume and the distance to
the stability boundary when selecting the
optimal defocusing parameter. A merit factor
was introduced that provides a comprehensive
approach to selecting the most suitable defocus
parameter for the system.

KEYWORDS: ABCD Matrix, CTH:YAG laser,
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|. INTRODUCTION

Solid-state lasers have found broad applications
in scientific, medical, industrial, and military
sectors. In numerous applications, the
extraction of a high-quality TEMgo mode that
has maximum power density and minimal
divergence plays a crucial role. In pulsed
flashlamp-pumped lasers, background
absorption of the lamp radiation by the crystal
and absorption of the pump energy by
impurities and color centers can induce
transient thermal gradients in the laser rod [1],
[2]. Subsequently, the rod may exhibit similar
to that of a converging lens, where the focal
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length is inversely proportional to pump
energy. This positive thermal lens effect within
the laser rod, can give rise to the formation of
local intensity maxima that may go beyond the
damage threshold of the optical elements inside
the cavity. Furthermore, it limits the output
energy and decreases the beam quality and the
mode spot size.

Thermal lensing is a common feature in all
solid-state lasers that affects their performance,
however, extensive research efforts have been
dedicated to mitigating this disturbing factor
through different solutions [3]-[9]. Various
techniques have been employed to mitigate the
adverse effects of thermal lensing. These
include thermally induced birefringence
compensation methods [3], filtering out heat
generated during the pumping process [4],
employing thermal lens compensation through
additional fixed elements (such as a telescope
or a single negative lens), and implementing
adaptive optics within the resonator [10]-[12].
Additionally, improving heat dissipation from
the gain media through more effective coolant
systems have also been explored [13]. Among
the techniques mentioned above, the use of
telescopic resonators is interesting and has been
explored even in non-solid-state lasers. This is
owing to their high fundamental mode volume
and the resulting good output beam quality
[14]-[19]. To our knowledge, Sarkies was the
first who report the employment of a resonator
configuration with an internal telescope [20].
Hanna et al. also studied different telescopic
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resonators in detail. Researchers commonly
apply the thin lens model for gain media,
leading to derived approximate analytical
expressions for resonator parameters [10].

Calculations based on thick lens ABCD matrix
formalism is seriously depended on a parameter
known as y» which is in turn related to the
dissipated heat. Since the results of the
calculations for the resonator characteristics
such as the dynamical stability region, and the
beam radius are strongly depended to
inaccurate estimation of this parameter could
lead to non-optimized resonator scheme. As we
know, the y parameter can be estimated from
the focal length of the heated rod which is
measured experimentally. However, based on
the assumptions made for a heated rod to be a
thick lens, the measured focal length should be
corrected to give more accurate value for y as

will be discussed later. As far as we know, this
correction has not been yet proposed and
evaluated.

Also, in this work we present a merit function
for trading off between higher mode volume
and broader dynamical stability region. Using
this merit could be a straightforward method to
judge about different resonator schemes
according to the desired laser system
performance. The calculations were made for a
Cr,Tm,Ho:YAG laser (mainly used in medical
applications).

Il. THERMAL LENS AND ABCD
APPROACH

Thermal lensing and the ABCD approach are
widely known concepts. However, for a
comprehensive analysis, it is important to
dedicate some discussion to address the
limitations of their accuracy here.

As we know, in solid-state lasers, thermal
lensing is a common occurrence where its focal
length can be determined using the Eq. (1) [1]:

1
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where K is the thermal conductivity, A is the rod
cross-section, P =QAL; is the total absorbed

power (Q is the thermal energy deposited in the
rod), C,, is the radial or azimuthal photo-

elastic coefficients, n,, L;, r,, and « are the

refractive index, the length, radius, and the
thermal expansion coefficient of the laser rod,
respectively, and dn/dT is the rod thermo-optic

coefficient. By applying Gaussian beam theory
and modeling thermal lensing using thick or
thin lenses, we can design active stable
resonators [21]. Basically, within optically
pumped laser rods, the refractive index changes
with distance from the optical axis (r)
quadratically due to temperature gradient
(Fig. 1). This dependency can be expressed
with Eq. (2) [1]:

n(r)=n, [1—%9’5((?)9 )

where ¢, is the thermal coefficient of the

refractive index, and #(Q)is a function of

dissipated heat. Such an optical element acts
like a thick lens with a matrix description
corresponding to a rod of length (Lr) as follows,
Eq. 3) [21], [22]:

v - cosQLR) (noy) "sin(yLy) )
—nyysin(yLg) cos(yLg)

in which:

7' =a,4(Q) 4)

The matrix in Eqg. (3) is a key component within
the round-trip matrix of a laser resonator.
Therefore, the y factor also holds crucial

significance in establishing the stability
condition, determining beam radius, and
evaluating mode  volume.  Accurately

estimating the y factor from experimental data
is essential for conducting precise resonator
analyses and ensuring optimal design
outcomes.
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Fig. 1 a) The laser rod as a thick thermal lens, and b)
equivalent thick lens-like media.

It can be easily demonstrated that the M,

matrix represents a thick lens with a focal
length f,, in which f;;, is given by Eq. (5). The
effective thickness, d,, and the parameter h, as
defined by Eqg. (6) and Eq. (7), respectively, are
also shown in Fig. 1. Note that, the h parameter
denotes the distance of the principal planes
from the rod ends [21].

1 .
—=nyysin(rLy) (5)
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i L
dezsm(;/ R) (6)
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The plane-plane telescopic resonator under
consideration (a CTH:YAG laser), depicted
schematically in Fig. 2(a) comprises four
primary elements: the back mirror, the output
coupler, CTH:YAG rod, and the telescope. The
telescope’'s two lenses are separated by
l,=d+5, where d=f +f,, and ¢ is the

telescope defocusing [10]. By employing the
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full ABCD formalism, the self-consistency
condition, under the paraxial approximation,
can be applied to determine the radius of
curvature, R, and the spot size, w of the TEMoo
beam at any given reference plane within the
resonator. Therefore, at an arbitrary reference
plane, the complex beam parameter, q satisfies

Eq. (8) [22], [23]:

Aq+B
= 8
a Cq+D ®)
where 1=1—' 12 (4 is the wavelength in
q W

the medium), and, A, B, C, and D, are ray matrix
elements of one round trip in the resonator (with
the equivalent thick lens), with the start and the
end at the selected reference plane. In this way,
R, and w at the chosen reference plane can be
derived as Eq. (9) and Eqg. (10):

2B
R=—"—"-""_ 9
D A ©)

12 1/2
B
W{i) B] - (10)
2
z { [A+Dj}
1—| 2=
2
The spot size (w) at various locations within the
resonator is computed (by Eg. 10) and depicted
in Fig. 2(b) for the telescopic resonator shown
in Fig. 2(a). The telescope has been employed

in a Galilean configuration, with lens focal
lengths of -20 mm and 80 mm, respectively.

Thermal lensing can be  measured
straightforwardly using the stability borders of
the resonator or by using other methods such as
the probe beam technique [24]-[26]. Hence, the
y factor can be determined by solving the
nonlinear Eq. (5) using the bisection numerical
method. Recently, by measuring the
transmission of a probe beam, we have
investigated the time-resolved evolution of the
thermal lens effect and measured the thermal
lens focal length of a CTH:YAG laser for a
range of pumping energies under lasing and
without lasing conditions [25], [26]. For a
CTH:YAG laser rod with dimensions of 12 cm
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in length, and 5 mm in diameter, featuring
doping concentrations of 0.36%, 5.7%, and 1%
for Ho, Tm, and Cr, respectively, the focal
length of thermal lens, was measured
experimentally to be 130 cm under pumping of
240 J [25].
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Fig. 2. a) The schematic diagram of the telescopic
resonator setup, and b) the beam radius at different
points in the resonator.

I11.RESULTS AND DISCUSSION

A. The yfactor

As it was mentioned in the previous section, the
thermal lens focal length is determined through
experimental measurements on a rod with a
particular length and various pumping levels.
This focal length can then be employed to
calculate the yfactor, as shown in the preceding
section (Eqg. 5).

Figure 3(a) shows the variation of the y factor
with thermal lens focal length for two distinct
rod lengths, i.e., 6 cm, and 12 cm. This figure
reveals that as the focal length increases, the y
factor decreases for rods of any length;
however, longer rods tend to have a lower y
factor. This trend is consistent with classical
optics principles and can be interpreted through
the paraxial approximation of a lens
transformation [27]. It’s worth mentioning that
the y factor is influenced by the pumping and
various rod physical characteristics like the
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diameter, refractive index, thermo-optic, and
photo-elastic coefficients.
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Fig. 3. The plots of the (a) y factor and (b) 5y /y

versus thermal lens focal length for two lengths of
rod.

It is important to note that in Eq. (5), the focal
length refers to the distance between the
principal plane and the focal point [21].
However, in practice, the thermal lens focal
length is usually measured as the distance
between one end of the rod and the focal point
(see Fig. 1(b)). In the first approximation, the

measured focal length (f;') can be taken as
equal to the theoretical thermal focal length
(f.), leading to Eq. (11) [21]:

~ 1
nyy sin(yLy)

m . ft
fth:th

(1)

However, in some situations, like in the case of
strong thermal lens effect, according to Fig. 1,
Eg. (11) may not be a correct estimate of the
focal length, and it is necessary to use a more
accurate value such as that obtained from

Eqg. (12):
X tan(ﬂaj
2 (12)

n,7sin(yL.) n,y

ftt:n: ftt:_h:

To assess the potential error introduced by
utilizing the first formula (Egq. 11) in
calculations, the y factor was calculated using
two equations, and its relative error value,
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or/y was calculated and plotted for two

different rod lengths and a range of thermal lens
focal lengths. The resulting values were then
plotted to show the discrepancy between the
two formulas (Eqg. 11 and Eq. 12), as depicted
in Fig. 3(b). It becomes apparent from this
figure that however, the error decreases as the
thermal lens focal length increases for both rod
lengths, at severe thermal lensing (which means
higher pumping rate), when calculated using
Eq. (11), introduces greater errors in evaluating
the resonator parameters. For example, for a 12
cm length rod, up to 26% error can be
anticipated in the calculations. For instance,
Lancaster et. al. obtained the thermal lens focal
lengths as short as 15 cm for a 7.5 cm
CTH:YAG laser rod operating at a 7Hz
repetition rate with a 1.2 kW flashlamp power
[28]. According to Fig. 3(b), at this specific
focal length, up to 10% error in the calculation
ymay be introduced if the correct formula is not
used.

B. Optimization and the Telescope
Defocusing Parameter

It has been shown that in a telescopic resonator,
the spot size and the mode volume depend on
the telescope defocusing parameter [10], [29].
The mode volume that refers to the effective
volume in which the electromagnetic field of a
particular mode is confined within the laser
active medium can be defined by Eq. (13) [23]:

EV = _[OLR _[: _[: E(x,y,z)E"(x,y,z)dxdydz
(13)

where E, is the peak value of the electric field
and V is the rod volume. For a single TEMoo
mode Gaussian beam, all phase factors are
eliminated and the TEMoo mode volume can be
evaluated as Eq. (14):

[ g
Ly Wz(z)J
e

2
Voo =W, II

00

20) 2z rdrdz (14)
w*(z

where w;, represents the beam waist radius and

needs to be determined. By utilizing at least two
beam radius values at distinct planes, one can
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calculate the beam waist radius. In this context,
we have determined the beam waist radius
through an iterative method using the beam
radius at the first and end faces of the gain
medium. It is straightforward to write an
equation that relates the beam waist radius and
its position (relative to the rod) as shown below,
Eq. (15):

4D A?
'’
(15)

2

N :WZ(DO)i\/W4(DO)

0 2

where D, represents the distance from the

beam waist to the face of the gain media where
the beam radius is considered.

Exploring the influence of yfactor on the mode
volume can be interesting. For example, when
analyzing a straightforward scenario involving
a rod as a thick lens within a resonator with
mirrors positioned at the rod ends (without a
telescope), the application of Eq. (10), yields a
constant beam spot size across the rod, i.e.,

12
w=[ 4 j . Consequently, the resulting
aLve

mode volume (using Eqg. 14) denoted as

Vy =7lg fn/i—yerf [%j is influenced by
0

the » factor. As previously discussed, it
highlights the significant role that the y factor
plays in the accurate modeling and design of
resonators.

Figure 4 shows the TEMoo mode volume and
beam radius (at the center of the gain medium)
with respect to the defocus parameter, o for two
distinct thermal lens focal lengths, i.e., 130 cm
and 135 cm for a telescopic resonator shown in
Fig. 2(a). These curves have two asymptotes,
that define the boundaries of the stability
region. The distance between the two
asymptotes determines the range of the defocus
parameter, 6, over which the resonator remains
stable (stability region). As this figure reveals,
when the focal length of the thermal lens
increases, the dynamic stability region shifts
toward a greater defocus parameter, while the
length of the dynamical stability region remains
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almost constant. This behavior is expected as
telescope defocusing compensates for the
thermal lens effect. As depicted in this figure,
the mode volume experiences a significant
increase at the periphery of the stability region,
in line with expectations outlined by Gaussian
beam theory. In fact, as one approaches these
boundary areas, the resonator exhibits
characteristics like those of a plane-parallel
resonator, demonstrating maximal TEMoo
mode volume while proving to be highly
sensitive to disturbances.
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Fig. 4. The TEMgo, mode volume (the blue curves)
and the beam radius (the red curves) as a function of
defocus parameter for two thermal lens focal lengths,
i.e. 130 cm (the solid lines) and 135 cm (the dotted
line).

A well-designed resonator scheme should aim
to optimize the TEMoo mode volume while also
ensuring a wide dynamical stability region.
This configuration enables efficient extraction
of stored energy in the gain media in the TEMoo
mode, enhancing beam quality essential for
diverse laser applications. Furthermore, a wide
dynamic stability region in such resonators
guarantees reliable operation, even in
challenging environments like industrial
settings. The investigation of TEMo mode
volume and stability behavior in response to the
defocus parameter in a telescopic resonator
(Fig. 4) encouraged us the formulate a merit
factor as Eq. (16). Since the defocus parameter
significantly influences the performance of the
telescope resonator, accurately determining its
value is essential for optimizing the system's
efficiency and achieving the desired optical
characteristics. Therefore, in this paper, we
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propose the use of a merit factor for identifying
the optimal value of this parameter. In this
approach, a defocus parameter value is chosen
such that, based on the specific application, the
merit factor reaches its maximum value. This
merit factor is defined for every thermal focal
length and defocus parameter.

a p
Vo) (L
where V is the TEMoo mode volume and the V,

is the minimum mode volume throughout the
dynamical stability region. As depicted in Fig.
4, L is the minimum distance of a specific 6
(like -0.35 cm in Fig. 4) to ¢ at the resonator’s
stability limit and L, is the maximum range of

o within which the resonator remains stable.
The « and g should be selected by a designer
based on the targeted application requirements.
For example, in a robust laser system where the
defocus parameter and thermal lens focal length
are tightly controlled, the « should exceed the
L. Conversely, in a laboratory laser setup, it is
preferable to have f greater than «. Figure 5
shows the variations in the defined merit factor
concerning the defocus parameter for a plane-
plane telescopic resonator in several cases. The
calculations in Fig. 5, were carried out for
f, =130cm . These curves can aid in

determining the optimal defocus parameter.
When « = =1, indicating equal importance
on mode volume and stability, the optimal
defocus position is located in the middle of the
stability region, as depicted in Fig. 5. As shown
in Fig. 5, in this case, the merit factor is
maximized at the center of the stability region,
while it decreases towards the stability region’s
boundaries. Therefore, in this situation, the
optimal value lies at the midpoint of the
stability region; ~-0.4cm for our case.
However, as the « to S ratio increases,
indicating greater emphasis on mode volume,
causes the optimal defocus parameter to shift
towards the edges of the stability region. For
instance, in the case of ¢« =3 and =1, the
merit factor is maximized at the center of the
stability region, but remains almost constant at

(16)
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other points within the region, maintaining the
midpoint as the optimal value. Nevertheless, as
the ratio increases further, as seen in the case of
a =5and g =1, the merit factor is maximized
at values near the edges of the stability region,
and the center of the stability region is no longer
the most suitable choice. As shown in this
figure, for cases with a high g to « ratio, the
merit factor exhibits a sharp maximum at the
center of the stability region. This indicates that
the optimal value is at the midpoint of the
stability region, and other points should be
avoided for selection.

1
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Fig. 5. The merit factor versus defocus parameter for
various a and .

As discussed above, the merit factor serves as a
mathematical tool designed to minimize or
eliminate the need for extensive and often time-
consuming laboratory testing. By providing a
reliable predictive measure, it enables more
efficient evaluation of system performance.

1\VV.CONCLUSION

In this work, a more accurate computational
formulation based on the ABCD approach was
applied to analyze telescopic resonators. The
thermal lens effect within the laser rod was
taken into account by incorporating a lens-like
medium matrix. The relation between the y
factor of the lens-like media and the focal
length of a thick equivalent lens was thoroughly
examined, leading to the establishment of a
more precise relation. The findings indicated
that when utilizing the simplified relation, an
error of up to 28% could be anticipated in
determining the y factor. Additionally, in this
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research, an investigation was conducted on the
changes in mode volume concerning the
defocus parameter, and a merit factor was
introduced. This merit factor considers both the
mode volume and the stability range
simultaneously, serving as a valuable metric for
optimization purposes.
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