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ABSTRACT— Quantum cascade lasers (QCLS)
are sources in mid-infrared and terahertz (THz)
regions used in the sensing domain and quality
control. This paper investigates QCLs subject to
filtered phase-conjugate feedback (FPCF).
Instabilities can be detected using the graphical
method of pole analysis and the particle swarm
optimization algorithm, which allows us to
identify and characterize the limitation and
critical relations between the laser operating
parameters. There is good agreement between
the two methods to stability boundaries. The
effects of FPCF in comparison with conventional
optical feedback (COF), phase-conjugate
feedback (PCF), and tilted optical feedback
(TOF) show that the penetration time factor has
a significant and greater influence on the
stability of QCL subject to FPCF. These results
are in perfect agreement with previous
experimental and analytical studies.

KEYWORDS: Quantum cascade laser, stability,
Pole analysis, PSO algorithm.

I. INTRODUCTION

Optical feedback is a powerful and effective
way to modify and trigger semiconductor lasers
(SLs) to generate rich nonlinear dynamics [1]—-
[3]. In most laser configurations, the feedback
occurs to different extents, making it necessary
to include it in the operational models of many
laser systems. Optical feedback strongly affects
laser performance. Depending on the feedback
strength, Line width narrowing and broadening,
threshold change, mode-hopping, and intensity-
noise degradation have been observed [4], [5].
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There are different types of feedback, such as
conventional optical feedback (COF) [6],[7],
phase-conjugate optical feedback (PCF) [8],
[9], filtered phase-conjugate optical feedback
(FPCF) [10], and also tilted optical feedback
(TOF) [11]. At different levels of external
optical feedback, the laser output shows
interesting dynamical behaviors such as a stable
state, periodic and quasi-periodic oscillations,
and chaos for the variations of the system
parameters [6]. The main applications that can
be mentioned are related to communication
purposes, optics-based information security,
and displacement sensors or terahertz imaging
[7], [12]. Moreover, there are several types of
lasers exist, such as semiconductor lasers [6],
solid-state lasers, and fiber lasers [1], [13],
which, depending on the type of laser, the
sensitivity to optical feedback which is related
to the light reflected in the laser cavity of an
external target is different [6], [14]. Quantum
cascade lasers (QCLs) are another example of
recently developed lasers and show interesting
dynamics [6]. QCLs are tunable laser sources
that have improved in performance in terms of
output power and tenability [15], [16]. Versus
other semiconductor lasers (SLs), QCLs are
defined by picosecond carrier lifetime and
exhibit a small linewidth enhancement factor
(LEF) [8], [17]. QCLs are selected for
applications such as aerospace
countermeasures [18], sensing of
environmental and chemical gases [19], lidar
systems [20], and open space communications
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[21]. Recently, the stability analysis of QCLs
subject to COF, PCF [7], [8], and also tilted
optical feedback (TOF) [11], [22] has been
studied. QCLs under COF exhibit stable
behavior [2], which is why that isn't easy to
generate pulse oscillations in QCLs through
COF [11]. When a QCL is considered subject
to PCF, it has illustrated a considerable variety
in the dynamics; hence it can be said that PCF
destabilizes the QCL [8], [10]. On the other
hand, the QCL can become unstable under
tilted-angle optical feedback, while it exhibits
stability under common optical feedback [2],
[21]. As the tilted feedback angle increases, the
QCL shows periodic oscillations, quasi-
periodic, and low-frequency oscillations [2],
[11], respectively. Considering the importance
of the QCLs application as well as obtained
results for COF, PCF, and TOF, it is necessary
to discuss the effect of FPCF by analytical and
experimental methods. In a further explanation
about FPCF, it can be said a phase-conjugate
mirror tends to have a peaked frequency
response, a finite interaction depth, and may
respond sluggishly. A finite interaction depth or
slow response conjugate phase feedback is
considered in semiconductor lasers. The
penetration time z, of light into the conjugate
phase medium is a significant parameter of
finite response conjugate phase feedback.
Compared to PCF, it was observed that the
stability increases slightly with increasing 7, ,

which is due to the spectral filtering caused by
the reflected field mirror that suppresses

frequencies larger than 1 [23], [24].
T

r

In this article, a QCL subject to FPCF is studied
analytically. We show that QCLs subject to
FPCF can become unstable. As a consequence,
different nonlinear dynamics are generated,
also we believe that this research work can be
practical in the community of QCLs interested
in the dynamical properties of these lasers. It
can show a general picture of the laser
performance in terms of stability and the role of
different parameters in this laser. For the
purpose of theoretical investigation of QCL
dynamics, a three-level rate equations model is
considered [10], [25]. Using certain
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assumptions and approximations, the rate
equations for a QCL reduce to the modified
Lang-Kobayashi rate equations [8]. The
condition of a Hopf bifurcation is analyzed,
which destabilizes the system [6], [8].
Bifurcation is a qualitative change in a system's
dynamic behavior caused by variations in a
parameter. A bifurcation diagram provides
insight into the transition between various
motion types as a system parameter changes,
enabling the analysis of the system's behavior
over a wide range of a key control parameter
[26], [27]. In previous studies [8], [10], it is not
possible to determine the asymptotic expression
for the Hopf condition for higher degrees
equations through approximate methods. So,
for analyzing the obtained results from the
higher-order characteristic equation of systems,
the pole analysis technique [28], [29] and the
particle swarm optimization (PSO) can be used
[30], [31]. The diagram obtained from the pole
analysis technique and the PSO algorithm helps
to detect instabilities [32], [33]. Therefore, by
using the proposed method, the characteristic
equation converts to the characteristic equation
of a closed-loop system [33]. Finally, the
critical relations for the responses of the
characteristic equation are determined by using
the pole analysis and PSO algorithm.

and approximations, the rate equations for a
QCL reduce to the modified Lang-Kobayashi
rate equations [8]. The condition of a Hopf
bifurcation is analyzed, which destabilizes the
system [6], [8]. Bifurcation is a qualitative
change in a system's dynamic behavior caused
by variations in a parameter. A bifurcation
diagram provides insight into the transition
between various motion types as a system
parameter changes, enabling the analysis of the
system's behavior over a wide range of a key
control parameter [26], [27]. In previous studies
[8], [10], it is not possible to determine the
asymptotic expression for the Hopf condition
for higher degrees equations through
approximate methods. So, for analyzing the
obtained results from the higher-order
characteristic equation of systems, the pole
analysis technique [28], [29] and the particle
swarm optimization (PSO) can be used [30],
[31]. The diagram obtained from the pole
analysis technique and the PSO algorithm helps
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to detect instabilities [32], [33]. Therefore, by
using the proposed method, the characteristic
equation converts to the characteristic equation
of a closed-loop system [33]. Finally, the
critical relations for the responses of the
characteristic equation are determined by using
the pole analysis and PSO algorithm.

Il. NUMERICAL MODEL AND STEADY
STATE ANALYSIS

Quantum Cascade Laser structures, which are
nanodevices, have become popular among
scientific teams around the world. In quantum
cascade lasers, there is a cascading structure
that causes each electron to cascade through
multiple active regions and generate a photon
each time. Indeed, the transition of the laser
happens in a region with multi-quantum wells
that is a 3-level laser. A QCL usually consists
of 20 to 40 periods, and electrons are
transferred from one active region to the other
by the tunneling effect [34]-[36]. In this paper
the Long-Kobayashi equations wused as
numerical model that, rewritten for QCLs
subject to the FPCF. This model also accords
mathematically as a semiconductor laser
subject to FPCF. The dimensionless rate
equations are as follows [7], [10]:

ay 1. .
& (i) (N-1)Y +nF (1)
dF _ 1p-

dN 2

E:y[. ] 3

where Y(t), F(t), and N(t) indicate the electric
field, complex feedback field and -carrier
population [7], [10] , respectively. The
linewidth enhancement factor (LEF) « is a key
parameter influencing the device's dynamic
properties. LEFs ranging corresponding to
QCL can be between 0.8 to 3 [8], [37]. s
represents the dimensionless time [17], and 7
is the feedback strength, which can be seen in
Eg. (1). In Eq. (2), the penetration-time and
round trip time are denoted by 7, and ¢

21

Vol. 18, No. 1, Winter-Spring, 2024

respectively [37],[10]. The ratios of the photon
to carrier lifetimes in Eq. (3) are represented y

(which is given by y =2y,A), and the current is
defined by I (where 1 =(P/A)+1) [17]. If 7, is
considered zero, Egs. (1)-(3) simplifies the
equations of a PCM with zero-penetration depth

[8]. According to [7], A ranges from 0.6 to 1.1.
In continue, for steady states analysis of EQs.

(1)-(3), Y =R exp(ip,) and F =R, exp(ip,)
are introduced. By applying these values to Egs.
(1)-(3), the following equations are obtained:

R _1

ds Z(N_l)R1+77chos(go2—(p1) 4
%:%(N&)m%sin(%-%) ®)
dN 2

E=7[|-N(1+Rl)} (6)
dR,

E:T—lr{Rl(s-r)cos[gol(s-r)ﬂﬂz]' R} (7)

d 1 |R(s—7) .
%:—Z{% Sln(¢l(s—z')+(p2)} (8)
The steady-state solutions such as PCM
produce zero depth. By assuming the feedback
strength 7 as a control parameter [7] and the
conditions of Egs. (4)-(8) equal to zero, the
steady-state solutions are calculated:

RY =—— (©)

Net— 21 41 (10)

Ji+a?

Now, the linear stability of equations (4)-(8)
can be performed. Therefore, the eigenvalues of
the linear variable equation must be considered
[17]:

_ -SA
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From the linearized equations and with the
assumption C =%(N -1), the Jacobian matrix

is determined, and the characteristic equations
for the growth rate 1 are obtained:

C -aCR %R -C  aCR
aC a aC
—_— — - -C
R 2 R
-2y(2C +1) 0 yl+R?») 0 0
ie—sz 0 0 i 0
T, T,
0 Lew 9 o L
T T

(12)

In order to determine Hopf conditions, A =ioc
[38] is introduced. The parameter o represents
the Hopf bifurcation frequency. Due to the
separation between the imaginary and real
parts, we obtained two equations for cand C:

0'4{rr(2(1-Crr)+)/rr (1+ RZ))}—JZX
x{(1+a?)|[-7CR?7, (1+C)+C?7 (y +2) |+
+7((1+ R2)+2rrR2)-ZC(2rr9/+1)}—
-a{sin(Zm)C2 (1+a*)+sin(or)| yCR%r, +
+2yC°R’r, (L+a’) |} - Cy cos(207) (1+a° )
x(1+R?)-(cos(o7) +1)[ yCR® (1+a°)
++202R2(1+a2)]:0

(13)
-r%0° -0 {Cz‘r (Cr, (1+a?)-2(yz, +2))+
+r, (27 (1+ R2)+rrR2)+1}—a{C2(l+a2)x
x(cos(207)-1)+y(2C - R*)+(cos(or) +1)x
«| CR?r, +2yC°Rr (1+a2)]+(1+a2)x

X

[
[ZCW ]}+C7/(1+a )[Sln 207)x

x(1+R?) |+ CR?sin(o7)(1+a*)[y +2C] =0
(14)
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Along with Egs. (13) and (14), the values of o
at a Hopf bifurcation point are presented. In the
limit value of y the conformity of these
equations is correctly verified by the conditions
obtained in [10]. However, the solutions of the
mentioned equations are sought in order of 1
value of y. Recently, studies have shown that a
relatively high feedback rate induces the first
dynamic instabilities in QCLs [7].

I1l.  ROUND TRIP TIME (7) AND
PENETRATION TIME (7, )

In this section, the influence of the round trip
time 7, penetration time z, , pump parameter P,

and the linewidth enhancement factor « on the
stability boundaries of the system was studied.
The results show that QCL subject to FPCF can
present a series of nonlinear dynamics such as
steady state, period doubling, and chaos by
changing the mentioned parameters. To
investigate the influences of the z, on laser
dynamics, bifurcation diagrams were proposed
in terms of the values of r, and 7 as the

bifurcation parameter. Figure 1 shows the
schematic of our numerical model for the QCL
subject to FPCF. Moreover, 7 is tunable and
can be defined as the bifurcation parameter.
Some of the numbers used are based on
previous studies [7], [10], [18]. As shown in

Fig. 1(a), it seems that when the value of 7, is

small, there is a change in the laser output
power. Specifically, at z, =05, the laser
exhibits various oscillations despite having
a=3 and =20. Figure 1(b) shows that the
dynamic variation decreases as the value of P
increases, while all other parameters remain
constant compared to Fig. 1(a). Figure 1(c)
depicts the significant impact of changing r,

(z, =1) and a (a=2) values on laser output.

Specifically, increasing r, and decreasing o

cause a noticeable shift in the dynamics of the
laser output. It appears that the figure only
shows the bifurcation and the onset of
instability. Other features may not be visible in
this context.
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Fig. 1. Bifurcation diagrams for the extreme of the output intensity |E|2 with # as the bifurcation parameter for (a)
and (b) 7, =0.5, =3, and =20, (c) 7, =1, =2, and 7=20, (d) 7, =1, =3, and =20, (e) 7, =1, =3, and =50,
() 7, =1, =3, and z=20. The values of the parameters are fixed to P=0.5, »=3.3, 1=1.83 in Figs. 1(a) and 1(c)-1(e),
and P=1.5, »=3.3, 1=3.5 in Figs. 1(b) and 1(f), respectively.

The presence of bifurcation, and other
dynamics, is shown in Fig. 1(d). The dynamics
have noticeable changes through the increase of
LEF. Figure 1(d) provides an example of
chaotic oscillations of the laser output for
o =3, but other parameters are the same as in
Fig. 1(c). In this case, through a further
increment in the LEF value, the laser output

23

demonstrates different regions, including quasi-
periodic oscillations and, finally chaotic
oscillations. Figure 1(e) represents the =50
and 7, =1. With increasing 7, the laser output

shows a more chaotic regime. As P increases
from 0.5 to 1.5, the regional shape of the
dynamics changes; hence bifurcation, period
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doubling, and chaos can be observed as shown
in Fig. 1(f).

In short, it can be written that the stability of the
quantum cascade system, due to its sensitivity
to feedback, is strongly dependent on changes

in important parameters such as z, and «. The
penetration depth time z, parameter increases

in the system, creating more instability, and we
witness more dynamics. Another significant
parameter can be called «. Which increases and
decreases, and QCL becomes more stable or
unstable.

IV. ASYMPTOTIC ANALYSIS

A. Asymptotic Analysis for Values of 7,

In this subsection, asymptotic expressions are
determined for Hopf bifurcation conditions.
The details of the steady-state solutions and
Hopf bifurcation conditions, as discussed in the

previous section. According to values of z,

and fixed parameters, we can reduce Egs. (13)
and (14) (Egs. (13) and (14) are in the order of

z,%) as follows:

2 [ m2pn. 2 1-2c-1
o _{ C?(1+a )+}/(2C T ﬂ -
2C3(1+a?)+

+c{—2(1+a2)(y+1)+2(1+a2)—4y}+

2C+1

o {%Ll[(&/ +1)—(1+a2ﬂ _ 27}—

2
_ 7 l_ _1)-0
2C+1{ 2C+1

(16)

In the following, an expression for feedback
strength 7 is derived from Egs. (9) and (10):

n=[ClN1+a’

17)

V.
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One can obtain an expression for pump current
| as a function of critical values C by rewriting
Eq. (16), leading to:

_|2[7—2J+
(2C +1)°
+ {(2g+1)+(2cysc+1) [(2”1)_(1*“2)}}*

+{+2C3 (1+ 052)+C2 {—2 (1+ az)((;;;lz) +

+2(1+a2)—4y]—27C} =0
(18)

To derive critical points from the characteristic
Eq. (16), one cannot use the approximations
applied in Ref. [10], as regards yis different for
the type of QCL lasers than SLs. For
conventional SL, y is typically in the order of
1073 [7]; therefore, the same method used in
previous studies cannot be expected to be
applicable in this case. As a result, various
nonlinear dynamics emerge, and we believe
that this research will be valuable to the QCL
community focused on the dynamical
properties of these lasers. In the following,
using the pole analysis method shows that
critical points can be achieved for the fifth-
order equation and determine which points and
roots can change the nature of the system.

POLE ANALYSIS

For the pole analysis of Eq. (18) and the
extraction of critical relations, the following
equation can be obtained by using the Root-
Locus (RL) method [39]. The root locus
method works by plotting the movement of the
closed-loop poles located in the s-plane, taking
the transfer function as a gain parameter [40].
Walter R. Evans [32] invented stability in
classical control system. In mathematics,
Laplace transforms are graphed on a complex s-
plane. In control theory, the root locus method
uses a graphical plot to test the effect of
variation of specific system parameters, with
the variation of controller gain within a


http://ijop.ir/article-1-570-en.html

[ Downloaded from ijop.ir on 2026-01-29 |

International Journal of Optics and Photonics (1JOP)

feedback control system, on the system's roots
[41]. Due to the use of a complex s-plane,
instead of using the time domain, the frequency
domain can be employed in processes [41]. It
can use as a graphical analysis tool in physics
and engineering [40]. As an advantage of the
root locus technique, we can comment on the
stability of systems without any need to write
conventional techniques. The stability criterion
has the advantage of reducing the order of the
equations that must be handled and applies to

K{4X5+8X4+[1—2I (y+1)+4]X°+[ - (7+1)+l—yI]X2—;yIX}

Vol. 18, No. 1, Winter-Spring, 2024

systems with more than one variable parameter
[28], [29], [42].

In this study, the RL method analyzes the poles
via plotting the paths traveled by the locations
of the characteristic Eg. (19) as adjustable K
ranges (as gain) from 0 to +oo [39]. Thus, to
make use of the RL method, Eq. (18) should be
rewritten as Eq. (A3) (see Appendix A) form,
and then has been written as the following
equation:

’ —16yX* =24y X +[ =12y +2y1 (27 +1) [ X* +[ 71 (2 +1) =2y + 271 [ X = *1 (1 -1)

This equation is a transform function. The
coefficients used to calculate the above relation
are in Appendix (A).

Figures. 2(a) and 2(b) show the results of
calculations for the transfer function, which
display in a typical root-locus plot. The
coefficients used to calculate the above
relationship can be found in Appendix B. In
these diagrams, the poles of Eq. (19) are
analyzed, and each of the poles is the root of Eq.
(18). According to Eq. (19), the five poles can
be obtained. Each of them can change the
nature of the stability of Eq. (18). The
horizontal and the vertical axis show the real
and the imaginary values of poles, respectively.

In this analysis, K tends from 0 to infinity as
long as the poles can continue for the specific
value of K, the nature of the poles can change,
and the stability condition eliminates.

As shown in Fig. 2(a) and 2(b), all five poles
change with increasing K value. However, for
two defined poles in a given K, the system's
stability changes from the real to the imaginary.
It is the first Hopf point, and at this point, with
Eq. (A2) (relation between K and «), the lowest
critical value of « and root of Eq. (18) is
specified. Using the RL method, for pumping
between 0 and 1.5 (as constant values), the

25

=0 (19)

obtained critical roots (Cr.) and their
corresponding o are shown in Table L.
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Fig. 2. Root-locus plot of K =é (a) for G=0:218,
(b) for G=1:15.
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Fig. 3. Bifurcation diagrams corresponding to the
domain of electric field |E|* with ) as the bifurcation
parameter. The different bifurcation diagrams have

been obtained from Egs. (4)-(8). a) for a=1.1374,
and P=0.5 and b) for a=1.29384, and P=0.

Following the strategy of [7], [43], we can
estimate the limit of this validity around
n = 0.5. The values of 7 obtained in this paper
are lower than this limit. For example, to
indicate the accuracy of the described method
in finding the first Hopf point, the values of
0=1.2938 and 1.1374 from Table 1 have been
selected for numerical solution, drawing
branches, and time series graphs. The obtained
results are confirmed by bifurcation diagrams
(Fig. 3) that show the first Hopf bifurcation and
Hopf point. In Figs. 3(a) and 3(b), the output
dynamics of the QCL subject to FPCF have
been depicted as a function of feedback
strengths for ¢=1.1374, P=0.5 and a=1.2938,
P=0.4, respectively. In Figs. 3(a) and 3(b), for
some positive values of the 7, |E| operates in

the periodic and stable dynamic. In addition,
the decrease of # (at #=0.22 and 5 =0.256) leads

Quantum Cascade Laser Subject to Filtered-phase-Conjugate Feedback: Stability, ...

to the appearance of a doubling period and Hopf
bifurcation. To confirm the above dynamics,

the time series |E|* have been checked for two
bifurcation diagrams. The results are shown in
Figs. 3(a) and 3(b) for the Figs. 2(a) and 2(b)
respectively. As can be seen, for [E[ in terms
of time (ps), #=0.205 (Fig. 3(a)) and #=0.328
(Fig. 3(b)) are the first Hopf points.

Now, by considering the obtained values (in
Table 1), the expression that generates the
critical roots of Eq. (18) has been investigated.
This relation is obtained by the Particle Swarm
Optimization (PSO) algorithm in the next
section.

V1. PARTICLE SWARM OPTIMIZATION

26

(PSO) ALGORITHM

In computational science, the PSO algorithm is
a computational method for optimizing
continuous nonlinear functions that are best
presented by explaining its conceptual
development and are computationally efficient
[33]. PSO, by having a population of particles,
solves the problem, which optimizes a problem
through repeated action and improves a
candidate solution due to the given measure of
quality [44]. Due to its many advantages,
including  its  simplicity and  easy
implementation, the most optimist solution can
be worked out in the particle swarm
optimization algorithm, and it can be used to
work out complex problems.

PSO is used widely in fields such as function
optimization, model classification, signal
procession, vague system control, etc. [45],
[46].

In this paper, a type of the PSO algorithm using
a population (obtained roots in Table I) of
candidate solutions (particles (C.g,)) works.
These particles tend to move around the D-
dimensional search space [43] (poles versus «
and P), the obtained relation according to the:

Coo = AVP (P -ANa+AG) ()
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The particles are moved under their own best
position and the best position of the swarm [33].
When the best positions are discovered (based
on A, A, and A, coefficients), these are used

to guide the movements of the swarm.

The procedure continues until an optimal
solution is finally attained. Finally, in Eq. (20),

the coefficients A, A,, and A, are obtained as
A =0.56324, A,=0.005and A,=0.1377.

Fig. 4 shows the changes of particle and root in
the search space (Three-dimensional trajectory
of poles versus « and P). In this figure, the
blue dashed line and red line present the
obtained roots by the RL method and the
particles (obtained roots by PSO (in Table 1)),
respectively. Eq. (20) is the best approximation
of the expression that generates the nearest

values to the C . Table 1 presents the roots
generated by C, and C, .

Table 1. The achieved and calculated results values for C
by PSO Algorithm (C ., ) versus RL method (C, ).

C

RL Crso a P

0 0 0 0
0.1430 0.1159 | 0.6735i 0.1
0.2280 0.2268 1.7321 0.2
0.2830 0.2895 1.4850 0.3
0.3380 0.3447 1.2938 0.4
0.3990 0.3951 1.1374 0.5
0.4470 0.4421 1.0040 0.6
0.4800 0.4863 0.8864 0.7
0.5530 0.5282 0.7796 0.8
0.5730 0.5684 0.6828 0.9
0.5990 0.6065 0.5866 1.0
0.6360 0.6430 0.4937 1.1
0.6830 0.6772 0.3934 1.2
0.7050 0.7086 0.2785 1.3
0.7500 0.7330 0.1005 1.4
0.7820 0.7825 | 0.2182i 1.5

Using Egs. (15) and (18), the following
expression for the feedback strength is
obtained:

1 =Ceso (1+a2) (21)

where C .y, is given by Eq. (20).
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Fig. 4. Particle and Root variations in search space
(poles versus « and P).

To study our critical expression outputs for
feedback strength, we numerically investigate
this equation and the change of the critical
values (as first Hopf bifurcation) of 7 versus «
and P as control parameters. Fig. 5 shows the
Critical feedback strength 7 as a function of the
LEF o pump parameter P and it can be said that
it is corresponds to the stability boundaries for
QCL with FPCF. The vertical and horizontal
axis represents the feedback strength » and «,
respectively. By increasing ¢, feedback
strength values indicate the tendency to
decrease. For example, when the linewidth
enhancement factor increases above o > 1.6,
the system becomes destabilized nearly the
n=0.45. Figure 5 shows that in the presence of
Hopf bifurcation, the system becomes
destabilized by values of LEF. It can be seen in
the figure, increasing the pump parameter
increments the value of the feedback strengthz.
According to the results of previous studies,
decreasing the value of « increases the strength
of the feedback and thus increases the stability.
For example, in [8], an increase in « led to a
reduction in the critical feedback strength.
Compared to [8], QCL subject to FPCF with
QCL subject to PCF, at o=1.5, the value of
feedback strength for PCF is about 0.3, and for
FPCF is about 0.5. Therefore, it can be said that
the QCL subject to FPCF has more stability
than the PCF. Then we intend to compare QCL
subject FPCF with COF [7]. For instance, at
=15, for COF, the value of 7 it should be
about 0.2 and 0.28 [7], [18]. Therefore, for the
realistic amount of the parameters, it can be said
that the QCL with FPCF is remarkably more
stable than with PCF and COF cases.
Furthermore, if the QCL is in the presence of
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TOF as the tilt angle increases, the feedback
strength 7 weakens, so the QCL is restabilized
and operates in continuous wave emission.

In continue, it has been tried to compare the
critical equation (Eq. (21)) obtained in the
previous sections with the feedback obtained in

[7], [8]. The time series |E|2 were obtained

without approximation and by directly
numerically solving the equations, and then the
time series were plotted using Table 1.
According to [6], [10], these time series
indicate the Hopf points.

068 - X,

ck strength
”

06 - Y

Famciba,

,,,,

13

nast ' ! ! .
02 04 06 08 1 12 14
pump eurment

Fig. 5. Critical feedback strength 7 as a function of
the (a) LEF «, (b) for pump parameter P.

VIlI. CONCLUSION

The objective of this paper is to describe and
investigate the properties of quantum cascade
lasers under filtered conjugate phase feedback
using asymptotic analysis, the RL method, and
the PSO algorithm.
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Theoretical and experimental studies have
demonstrated that optical feedback, depending
on feedback strength, can lead to stability and
instability dynamics in QCLs [47], [48].

However, it appears that for a more extensive
range of feedback strength ratios, a QCL
subjected to PCF is more stable than the COF
case. The PCF with finite depth tends to
suppress chaotic output and produces pulses
whose repetition rate is tunable by varying PCF
reflectivity [7], [49]. Next, in recent works [2],
[10] , it can be said that the QCL is well
destabilized by tilted optical feedback, the
dynamics of which can be tuned by changing
the tilt angle, the instabilities increase as the
angle increases [2]. In this study, the FPCF laser
showed less instability due to specific values of

., pump current, and small LEF. As a result,

for different feedback strength values, the QCL
subject to FPCF was found to be more stable
when compared to QCL with PCF, COF, and
TOF. FPCF is more complex than conventional
feedback. It can show better stability
performance, especially in the case of
distortion. FPCF by adding filtering improves
PCF. By incorporating filtering mechanisms,
FPCF enhances stability and signal quality [6],
[11], [22], [50], [51].

APPENDIX A

To obtain the critical roots of Eq. (16) base of
the technique of [39], the equation is rewritten
as follows:

K(2X +1)° X*+B(2X +1) X * +
+F(2X +1)° X2+ D(2X +1) X +
+E(2X +1)° X ~Gh+G(2X +1)=0

(A1)
K=2(1+a%), B=-2(1+a’)1(y+1)
F=2(1+a%)-4y,
D=yl((27+1)-(1+a?)),
E=-2y, G=4%l, h=1 (A2)


http://ijop.ir/article-1-570-en.html

[ Downloaded from ijop.ir on 2026-01-29 |

International Journal of Optics and Photonics (1JOP)

X°[4K+X*(8(K-27)) |+
X[ 5K —2KI ((y +1)—24y) |+

xz{ KI(y+1)+K - 12y+2y|[(2y+1)—ﬂ}
X7l (27/+1)—5 -2y +27°1 —}/ZI(I—l):O
{[er--5]-ara]
(A3)

Finally, for clarity and understanding, we
simplify the Eq. (A3) as Eq. (19).

APPENDIX B

filter

’ QCL - PCM

’ Y(t)

Fig. 6. Schematic diagram of QCL subject to a
filtered-phase-conjugated feedback [6], [23].

Figure 6 shows a schematic of the system for a
quantum cascade laser under filtered-phase-
conjugated feedback. The beam output from the
quantum cascade laser encounters a phase-
conjugate mirror that corrects any distortion
and reflects it to its original path. Next, a filter
would be placed in the path, which is selected
to allow certain wavelengths of light to pass
through.

Assuming that Y(t) is the electric field and, F(t)
complex feedback field, for the finite response
of a phase-conjugate mirror, the associated
equations are written as Eqgs. (1)-(3) for such a
system. Spectral filtering of the complex
feedback field, suppressing frequencies larger

than l. Therefore, it was seen that with

Ty

increasing 7,
[6], [23], [52]

, the stability increases slightly
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