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ABSTRACT— This research addresses the
complexities and inefficiencies encountered in
fabricating fiber Bragg gratings (FBGs), which
are crucial for applications in optical
communications, lasers, and sensors. The core
challenge lies in the intricate relationship
between fabrication parameters and the FBG's
physical properties, making optimization time-
consuming. To circumvent these obstacles, the
study introduces an artificial intelligence-based
approach, utilizing a neural network to predict
FBG physical parameters from transmission
spectra, thereby streamlining the fabrication
process. The neural network demonstrated
exceptional predictive accuracy, significantly
reducing the parameter prediction time from
days to seconds. This advancement offers a
promising avenue for enhancing the efficiency
and precision of FBG sensor design and
fabrication. The research not only showcases the
potential ~ of  artificial  intelligence in
revolutionizing FBG production but also
contributes to the broader field of optical
technology by facilitating more rapid and
informed design decisions, ultimately paving the
way for developing more sophisticated and
sensitive FBG-based applications.

KEYwoRDS: Fiber Bragg Gratings, Optical

Fiber, Deep Learning, Neural Network,
Acrtificial Intelligence.
|.INTRODUCTION

A fiber Bragg grating (FBG) is a short section
of optical fiber, typically ranging from a few
millimeters to a few centimeters, where the
refractive index of the core region is
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periodically modulated on a sub-wavelength
scale [1, 2]. FBGs have found wide applications
in various fields, including optical
communication systems as filters [3], lasers as
cavity mirrors [4, 5], temperature [6], strain [7],
and pressure [8] sensors with high sensitivity
[9]. The typical transmission spectrum of an
FBG is depicted in Fig.1. Three significant
aspects are observed in the figure: firstly, the
maximum reflectivity at the wavelength of
1550 nm; secondly, the Full-Width Half-
Maximum (FWHM) where the FBG acts as a
strong reflector; and thirdly, the series of
distinct, narrow peaks known as Strength of
sidelobe peaks. These elements are influenced
by specific physical parameters of the FBG,
such as its length, amplitude modulation index,
apodization type, and period. The values of
these parameters, in turn, depend on the
fabrication process of the FBG, including
factors such as laser pulse intensity, number of
laser pulses, and fiber composition, referred to
as fabrication parameters. In  sensing
applications, the objective is to generate slow-
light peaks as narrow and strong as possible,
necessitating the optimization of the fabrication
parameters [2, 10]. However, this study faces
several challenges. Firstly, the relationship
between the fabrication and resulting physical
parameters is poorly understood, often leading
to a trial-and-error approach in determining the
fabrication parameter values for FBG
fabrication. Secondly, calculating the physical
parameters from the measured transmission
spectrum is non-trivial.
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Fig. 1. The plan of the FBG structure and NN architecture for prediction of output parameters. An NN architecture
was employed to predict the features of the FBG based on the design parameters.

A real-coded genetic algorithm was proposed
for this calculation in [11, 12], while a Markov
decision process was employed for optimizing
similar structures [13]. Conversely, predicting
the transmission spectrum from the physical
parameter values is relatively straightforward
using existing analytical methods, such as the
Transfer Matrix Method (TMM) based on
electromagnetic theory, which solves for the
amplitudes of transmitted and reflected electric
fields [14]. As a result, scientists, including
many graduate students, frequently resort to the
latter approach, spending days adjusting the
physical parameter values until the calculated
spectrum matches the measured spectrum.
Unfortunately, the use of numerical solvers in
simulations can be quite time-consuming and
computationally expensive. This can be
especially problematic in situations where real-
time processing is necessary, such as with
biosensors. The rapid progress of Artificial
Intelligence (Al) has propelled Deep Learning
(DL) to the forefront, recognizing it as an
innovative technique to overcome current
obstacles [15]. DL differs from traditional
Machine Learning methods by exploiting the
complex multilayer design of neural networks
(NNs) to extract attributes at different scales
and depths. This strategy notably enhances
precision and efficiency in regression analyses.
Consequently, there has been a surge in the
implementation of DL across photonics fields
[16].

This project introduces an NN that learns the
correspondence  between a transmission

166

spectrum and its associated physical parameters
to overcome the time-consuming fitting
process. The network takes the features of the
transmission spectrum as input and outputs a
vector of predicted parameter values. This
approach significantly reduces the time
required to predict the physical parameters for
a given spectrum, reducing it from days to
seconds. This acceleration enhances research
efforts to develop more advanced and highly
sensitive FBG sensors.

Il. THEORY AND MODELING

In this study, coupled mode theory is employed
to analyze coupled-mode structures, while the
TMM is utilized to solve the coupled mode
equations. Light incident on an FBG is
efficiently reflected when it satisfies the Bragg
condition [17]:

A‘B = Zneff A, (1)

where Ag represents the Bragg wavelength, ne
1s the effective refractive index, and A denotes
the grating period. The refractive index
distribution n(z) depicted in Fig. 1 can be
expressed as follows [18]:

n(z)=n,+Ang (z)+

2
A(z)An, (z)cos((2z/A)z +6(z)), @
where no represents the average refractive index
change of the fiber core, A(z) is the apodization
function, Anac represents the maximum index
variation, Angc IS the average change in
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refractive index, and 6 denotes the period chirp.
By applying the coupled mode theory, the
reflectivity of a grating can be described as [18,
19]:

~ x*sinh?(sL)
- AB*sinh?(sL)+s?cosh?(sL)

R(L,A) 3)

where R(L, 1) represents the reflectivity, L is the
length of the grating, « denotes the coupling
constant, Af represents the detuning wave
vector, and s is defined as s=(x>-Af?)Y2. In a
chirped FBG, the grating period varies along
the length of the grating. The chirp coefficient
influences the period as follows:

period —(a/ 2) < A < period +(a / 2), (4)

where « represents the chirp coefficient, and z
varies between O and L. In this study, the
following apodization functions are utilized for
the design and simulation of an FBG [19]:

Uniform:
L L
A(z)=1 ——<z <—, 5
(2)=1 -Z<z< (5)
Cosine:
7 L L
A(z)=cos| —| ——<z <—, 6
( ) (LJ 2 2 ©)

A(z)zcosz(%j —%SZ S%, (7)
Tanh:
e
L L L
Alz)= tanh (1) _ESZSE’(S)

Here, the parameter # can be adjusted to modify
the sharpness of the apodization profile. Figure
2 illustrates these apodization functions. In
optical design, an apodization function is
carefully designed and can be pretty intricate
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and tailored to meet specific system
requirements and characteristics.
A
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Fig. 2. The illustration of apodization functions. In
optical design terminology, an apodization function
refers to the intentional modification of an optical
system's input intensity profile. This function may be
complex and carefully created to customize the
system to specific characteristics.

11l.METHOD OF DL IMPLEMENTATION

The primary objective of this research is to
utilize a vector containing the normalized
physical parameters of an FBG as input to
generate a corresponding measured
transmission spectrum (refer to Fig. 1). Several
encoding methods can be considered for the
input data:

1. Image representation: Using an image of
the transmission spectrum, although
feasible, presents challenges. To accurately
capture the number, height, and width of
the numerous slow-light peaks on the left
edge of the spectrum, high-resolution
images of at least 1080 x 1080 or larger
would be required. However, processing
such images can significantly slow down
data processing, and encoding the image
can result in information loss. Therefore,
this method is not the most accurate for
representing the data.

2. Vectorization of the spectrum: Another
approach is to vectorize the transmission
spectrum as (x1(i), x2(i)), where x1(i)
represents a vector of wavelengths ranging
from 1550 nm to 1560 nm, and x2(i)
represents a vector of the corresponding
transmitted power T at those wavelengths.
However, this method leads to significant
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and cumbersome  weight
challenging training and storage.

matrices,

3. Parameterization of the input data: The
preferred approach is to parameterize the
input data.

It is important to note that the spectra are highly
dependent on the parameter values and must be
carefully encoded to enable accurate
predictions by the NN. The provided formulas
establish the relationship between these inputs
and the desired outputs. In the next section, we
will present the correlation of these parameters
in  more detail, including simulation
justifications. Furthermore, since there is no
publicly available dataset for this problem, we
generated our dataset in-house. We trained the
NN using standardized FBG design parameters,
resulting in a normalized spectrum consisting of
30 data points. The thorough investigation
carried out in this work generated a
comprehensive training dataset consisting of
1.5x10* unique samples, each of which was
carefully produced through rigorous Finite-
Difference Time-Domain (FDTD) simulations.
The total number of samples was divided into
training, validation, and test datasets, with a
ratio of 70% for training, 15% for validation,
and 15% for testing. The training process
employed a batch size of 40 and continued until
improvements in the validation loss stopped,
with updates based on gradients computed from
the training loss. The data figures shown in this
paper were drawn exclusively from the
validation set and were not used during the
actual training phase. The model's capacity to
generalize to new, unseen data depended
critically on the appropriate selection of
hyperparameters, such as batch size, number of
training iterations, and the learning rate.
Throughout the 250 training epochs, a constant
learning rate of 0.05 was maintained.

The NN architecture employed in this study
consisted of three fully connected dense layers.
This NN identifies complex relationships
between input parameters and the resulting
transmission  spectrum, giving a more
comprehensive understanding of the FBG's
behavior and performance. The hidden units of
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these layers were set to 25, 50, and 25,
respectively, as illustrated in Fig. 1 (In this
figure, each node represents five neurons).
ReLU activation was utilized in the initial
layers, while the last layer employed a sigmoid
activation function to ensure output values were
constrained within the range of 0 and 1.

The mean squared error (MSE) was selected as
the loss metric for evaluating the network's
performance and optimizing the weights. The
MSE measures the average squared difference
between the predicted and actual values, as
depicted by the specified MSE function.

n 2

MSE = % 2( ypred - ytrue) J (9)

i=1

where n denotes the total number of data points,
Ypred 1S the predicted value, and yirue represents
the actual value computed utilizing the FDTD
method.

The Adam optimizer was employed in this
study, utilizing the default parameters
introduced in the original publication [20]. The
NN implementation was facilitated using the
Keras library [21], a Python-based DL library
that operates on top of TensorFlow [22], an
open-source Python library. Keras and
Tensorflow were chosen due to their convenient
helper functions, which greatly simplified and
expedited the development of this DL
approach.

I\V.RESULTS AND DISCUSSION

The parameters used for simulation are shown
in Table 1. Based on the described model and
some significant practical considerations that
should be considered when designing an FBG,
we investigate the effects of input parameters
on the outputs in the following subsections.

Table 1. The parameters used in the simulation.

Parameter Quantity
Free space wavelength, (nm) 1550
Period, (um) 0.5
Modulation depth 0.0003
Cladding index 1.45
Waveguide width and height (um) 5.25
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A. Index Difference

An increase in index difference causes an
increase in reflectivity, bandwidth, and sidelobe
strength, so this increase is not the same at
different lengths. The reflectivity, bandwidth,
and sidelobe strength variation are calculated
when the index difference varies from 0.01 to
0.1 and 0.1 to 0.2. This result demonstrates that
the increase of undesirable characteristics, such
as sidelobe strength, is greater than desirable
characteristics, such as reflectivity, when the
index difference varies from 0.1 to 0.2.
Therefore, index differences greater than 0.1
are not suitable. The increase in sidelobe
strength is remarkable and, therefore, must be
reduced. In the next section, we will examine
methods of reducing sidelobe strength.

B. Apodization

Apodization is a technique that reduces the
sidelobe strength. The functions that have been
used in apodization are as follows: Cosine,
Raised-Cosine, and Tanh. These functions will
be applied to the FBG and evaluated in this
section. Figure 3a illustrates how the
apodization process decreases the reflectivity.
It is observed that the reflectivity increases with
an increase in grating length and reaches 100%
at the approximate length of 15mm for the case
of uniform FBG, 25mm for Cosine apodized
FBG, and 30mm for both Raised-Cosine and
Tanh apodized FBG. Figure 3a also shows that
the Raised-Cosine and Tanh-applied FBG
reflectivities are the same, and the Cosine
profile has the highest reflectivity.

Sidelobe strength reduction is the main effect of
applying apodization. This reduction depends
on apodization profiles and is different at
various lengths. The relationship between
apodized FBG Sidelobe strength and grating
length has been illustrated in Fig. 3b. Nonlinear
changes in the Sidelobe strength with
increasing grating length can be observed in
Fig. 3b. As can be seen in this figure, the
Raised-Cosine profile has the lowest Sidelobe
strength. The selection of an appropriate
bandwidth depends on the applications. The
wider bandwidth is a key parameter for
uncooled pump laser applications. Also, the
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FBGs with wider bandwidths are required in the
FBG stabilizer design [23] and ultrasonic
detectors [24].

100

2

80

-
<

=
)

reflectivity (%)
wn
=

u r T TS [N SN T TN TN [N TN ST WU S [N SN SN S S [ S WA S T S W S —
10 20 30
Length (mm)

(@)

=
T

w
T

[*]
T

Strength of R.Sidelobe (%)

Length (mm)

(b)

13
|- Uniform

= i
CEN S|

S

FWHM (nm)

s =2 = = =
B & a = b
T

=
[

Length (mm)

(©)
Fig. 3. (a) shows that the reflectivity of apodized
FBGs increases with grating length. The cosine
profile has the highest reflectivity. (b) shows that the
Raised-Cosine profile has the lowest sidelobe
strength. (c) shows that the Raised-Cosine profile has
the highest bandwidth.

In the sensing applications, The FBGs have
better resolution with narrower bandwidth and
can achieve higher measurement speed [18].
However, the optical signal-to-noise ratio of the
long-distance point sensing system decreases
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gradually when the bandwidth of the FBG
increases. Fig. 3c demonstrates that applying
apodization can change the bandwidth. As is
observed from Fig. 3©, the Raised-Cosine
profile provides the highest bandwidth among
the simulated apodized profiles.

C. Deep Learning Technique

As anticipated, the training loss decreased as
the number of epochs increased, as illustrated in
Fig. 4. The training loss rapidly converged to a
low value of 0.055 after 250 epochs. Notably,
the error on the validation set closely aligned
with the training set, which was expected since
they originated from the same distribution. This
indicates that the network did not overfit the
training data. Expanding the width or size of the
network did not yield significant improvements
in performance.

Training and validation loss of model

—Validation error
—Training error

)]

"
11 MSE =0.055 ;
]

MSE (x107)

0 50 100 150 200 250
Epochs
Fig. 4. The graph displays the NN's ability to
estimate the spectrum. It shows the training loss,
which indicates significant decreases. This drop
suggests that the NN can recognize patterns in the
data.

This observation suggests that enhancements
may be required in the training dataset size
and/or the encoding of input features. Given the
relatively small dataset, iterating through the
entire dataset per epoch did not impose a
significant time burden. Thus, the batch size
was maintained equal to the number of training
samples. However, it may be necessary to
reduce the batch size in future endeavors
involving larger datasets. Table 2 presents two
examples from the test set, demonstrating
instances where the ground truth and predicted
parameter values exhibit an excellent match.
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The term “ground truth” refers to the known or
accepted data used as a benchmark or reference
point for training and evaluating machine
learning models.

Table 2. DL's predicted characteristics of FBG
compared to its actual characteristics.

FBG Reflectivity Sidelobe Bandwidth
(%) strength (%) (nm)

FDTD | DL |FDTD | DL |FDTD| DL

Uniform | 100 100 | 75.10 |75.15] 0.30 |0.29

Cosine 100 100 | 0.40 | 0.42 | 0.30 |0.29

Raised- | 165 | 100 | 0.00 | 0.00| 0.30 |0.27

Cosine

Tanh 100 100 | 0.91 | 0.90 | 0.25 |0.28

It represents the true or definitive information
about a dataset, essential for supervised
learning tasks where the model aims to predict
or classify the target variable accurately. The
strong correspondence between the values
further confirms the approach's effectiveness in
learning the relationship between the input and
output. We recognize that dedicating additional
efforts to refining this approach can yield even
more remarkable results. Nonetheless, the
primary objective of this research is to
showcase the potential of Al in predicting
desired parameters for FBG designers. Using
approaches that automatically identify spectral
features, such as long short-term memory
(LSTM), as opposed to manually engineering
features as done in this study, may potentially
enhance performance in such cases. These
aspects can be further investigated and explored
in future research endeavors, providing
opportunities to expand upon the findings and
delve deeper into the subject matter.

D. Study Limitations

As we approach the conclusion of this work, it
is only fair that we critically scrutinize these
achievements. Although the NN developed in
this study effectively predicts the transmission
spectra for various types of FBGs, such as
uniform, apodized, and linearly chirped
designs, it currently does not extend to specific
specialized FBG structures. Specifically, the
model lacks training for highly complex
configurations like tilted FBGs or nonlinearly
chirped FBGs, which require advanced
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fabrication techniques. This limitation arises
from two main factors: First, these specialized
FBG types represent only a tiny portion of FBG
devices used in practical applications. Second,
accurate modeling these complex structures
would necessitate a considerable increase in the
number of input parameters for the NN, thereby
requiring a significantly larger training dataset
that is not currently available. Nonetheless, we
acknowledge the need to enhance the proposed
model's generalization capabilities continually.
With access to more computational resources
and a more extensive FBG structural dataset,
future research could aim to incorporate the
parameters needed to predict the transmission
spectra of tilted and nonlinearly chirped FBGs.
This would enable the NN to offer a
comprehensive solution for modeling FBG
devices, thereby broadening its practical
applicability to a broader array of photonic
technologies.

V. CONCLUSION

This study has leveraged the power of deep
learning (DL) to establish a strong correlation
between the  transmission spectrum
characteristics of fiber Bragg gratings (FBGS)
and their operational effectiveness. Our
research has demonstrated the ability of DL
techniques to navigate the complexities of
inverse design, significantly enhancing the
capabilities of FBGs. The neural network (NN)
models developed as part of this work have
rapidly converged and provided detailed
predictions of the spectral features for various
FBG spatial configurations.

Notably, the NN models have shown the
remarkable ability to closely align the predicted
transmission spectra with those obtained from
rigorous finite-difference time-domain (FDTD)
simulations, highlighting the exceptional
precision of our deep learning approach. This
method has substantially reduced the
computational demands compared to traditional
numerical solvers, enabling swift and cost-
effective spectral predictions for FBGs.
Furthermore, our methodology has successfully
overcome the longstanding challenge of inverse
design, empowering the creation of optimal
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FBG geometries that produce the desired
optical response spectra.

The validation of our DL model has been based
on spectra from physically realizable FBG
configurations, underscoring the potential for
integrating NN-enabled FBGs into optical
communications systems. This validation
emphasizes the practical significance of our
findings, demonstrating their applicability
across real-world contexts, including all-optical
signal processing and communication.

The combination of the precision of
nanotechnology and the computational power
and pattern recognition capabilities of artificial
intelligence is ushering in a new era of scientific
innovation. This convergence promises to
unleash groundbreaking discoveries and drive
innovative applications, marking a
transformative shift in scientific exploration
with the potential to revolutionize numerous
fields, including the design and fabrication of
FBG-based sensors and devices.
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