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ABSTRACT— The creation of single zeptosecond
pulses is important in various scientific fields,
particularly for studying time-resolved nuclear
processes. In this study, a clean single sub-
attosecond (270 zeptosecond) pulse is obtained in
the simulation of a femtosecond laser with over
dense plasma. First, the desired laser and plasma
parameters are utilized to achieve the nano-
bunches in the plasma surface and the desired
spectrum up to 2000th harmonics is obtained.
Then, different filters such as filtering the
harmonics and different intensity filters are
applied where, the special exponential function is
due to a very clean single zeptosecond pulse.
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|. INTRODUCTION

The motivation for generating short pulses is to
study ultra-fast dynamic processes. Some
molecular processes, such as the decay of
excited levels, can be tracked with pulses longer
than 100 fs. However, there are some nuclear
phenomena where the investigation of the time-
resolved dynamics requires much shorter pulses
with zepto-seconds (zs) duration. The time
scales of atomic and nuclear processes have
been described by Krausz and Ivanov [1].
Atomic motion on molecular scales occurs at
femtosecond to picosecond scales, electron
motion in outer shells of atoms occurs on the
time scale about tens atto-seconds, and electron
motion in inner shells of atoms is expected to
occur in the time scale of single attosecond.
Faster scales as nuclear dynamics are predicted
to occur in zeptosecond (10! s) time scales.
Some of these nuclear phenomena are such as
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resonance fluorescence [2], internal resonance
conversion [3], compound nuclei evolution [4],
and photo disintegration of nuclei [5].

Numerous techniques have been suggested for
producing short pulses, with a focus on creating
linearly polarized (LP) single and isolated
attosecond pulses [6]. However, there is a need
for  circularly-polarized  (CP) isolated
attosecond pulses due to their distinct
properties, which are essential for various
applications such as identifying molecular
chirality [7], investigating magnetic properties
[8-10], and studying spin dynamics [11].

In order to obtain such pulses, the concept of
generating high harmonics through reflection
the lasers from plasma, has been the subject of
numerous researches [12-14] and various
simulation and experimental works are devoted
to laser interactions with over dense plasmas
[15-19]. Plaja et al. investigated the potential of
an oscillating plasma mirror in order to produce
short pulses [13], Naumova et al. have studied
the isolation of a single attosecond pulse when
a laser pulse is reflected from a plasma surface
Their idea is based on the following model. The
laser pulse is up-converted as a result of the
Doppler-shifted reflection from a plasma mirror
[14]. Another successful approach towards
coherent ultrashort pulse production is high
harmonic generation (HHG) [20]. Gas jets have
been used to achieve high photon energy of
approximately 2.5 keV [21,22]. However, to
obtain higher photon energies, relativistic
intensities are required. Unfortunately, the
relativistic drift of ionized electrons suppresses
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the HHG vyield in atomic systems [23].
However, there are methods to counteract the
drift in the weakly relativistic regime and
achieve higher photon energies [24]. Shim et al.
have investigated the zeptosecond isolated
pulse generation using a free electron laser [25].
Gordienko et al. have obtained zeptosecond
pulses via the interaction of overdense plasmas
in ultra-relativistic laser pulses [26], and
Klaiber et al. have obtained coherent
zeptosecond pulses with MeV photon energy
[27]. Studies have shown that controlling target
material [28], plasma length scale [28], carrier
phase [29,30], laser pulse polarization [30,31],
and the laser cycles [32-33] can control the
width of the short pulses.

In this study, LPIC™ (Particle In Cell) code is
used to simulate the interaction between the
laser pulse and the solid target in coherent
synchronize emission (CSE) model. LPIC** is
a 1D3V (one spatial and three velocity
dimensions) code which simulates the motion
of charged particles in the electromagnetic
field. The obtained results show that by
controlling the intensity and duration of the
laser pulse, as well as other properties such as
target material and the angle of incident pulse,
it is possible to obtain very wide spectrum of
high harmonics via the nano-bunches. Also,
regarding the immobility of ions in the ultra-
relativistic regime, improves the spectrum of
high harmonics. Then, the different filters are
applied, in which a single 270 zs pulse is
obtained by means of an exponential filter.

Il. THEORY

Different mechanisms are proposed in order to
describe the high-order harmonics resulting
from the interaction of lasers with solid targets.
Among these mechanisms, the Coherent Wake
Emission (CWE) [34,35], the Relativistic
Oscillating Mirror (ROM) [36-38], and the
Coherent Synchrotron Emission (CSE) [32,39]
are important models in which describe the
interaction of laser with plasma. The CWE
mechanism is used in the region of non-
relativistic intensity, the ROM mechanism is
used for relativistic intensities, and the CSE
mechanism is appropriate in the ultra-
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relativistic intensities. In the CSE mechanism,
very dense and narrow electron nano-bunches
are formed in the plasma-Vacuum boundary
which causes the synchronize and coherent
emission [32,39-41]. The spectrum in the CSE
model can be discussed by means of one-
dimensional current distribution and the
reflected electric field can be written as follows
[32]:

Eycsp(t,x) = Zjn T (t +22 ,x’) dx', (1)

oo Cc

The calculation of the spectrum is based on the
following two assumptions:

1) The reflected field is produced by very
narrow electron bunches. If the current
layer is as (t,x) = j(t) §(x — x.,(t)) , the
optimal coherence is obtained for high
frequencies. In order to include more
realistic cases, a finite electron distribution
is considered as:

j(t,x) = j(©) f(x — xa (D), ()

where j(t) is the current, x.(t)is the
location of electrons, and f(x) is the shape
of function, which is a constant value [32].

2) In ultra-relativistic conditions( ay > 1), it
is reasonable to assume that the changes in
the velocity components is controlled by
changing the direction of motion, instead
of the change in the absolute velocity. The
movement of the electron in the
momentum space is described as follows:

(o Py) = agmec(Pr, By), 3
j© = ecngpy/(a® + 6" + 8,9, (4
Yo = ¢ P/ (ag” + Bx” + By, (5)
Considering Eqg. 2, and the Fourier transform of

Eqg. 1, the following equation is obtained for the
reflected electric field:

By esp(@) =2 f(@) [T j(t) exp[—iw(t +
xer(£)/0)]dt, (6)
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where, f(w) refers to the Fourier transform of
the function. The phase derivative (& = w(t +
x01(t)/c)) at the points where x,; = —c tends
to zero, so according to the second assumption
at these moments p,, = 0. Now, knowing that at
a point where the phase is constant, the current
changes sign, and by Taylor's expansion of the
equations j(t) = aot and x.(t) = —vet +
a,t3/3, we can get Eq. 1 rewritten as follows
[32]:

Eycse(w) = i(Zn)zenec_locOqu/3 f(w) x
w23 Ai' (13—_\/1)(02/3), @)

44}

And finally, the frequency spectrum envelope obtained

as follows [32]:
2

1) « |f(@)| 0™ lm((i))l L ®)

Wrs

where  w,s = 23/%a;y3 and y,=(1-—
v2)~/2 is the relativistic gamma factor of the
electron bunch at the moment the bunch moves
towards the observer. Considering that nano-
bunches are responsible for generation of high
harmonics, it is expected that the frequency
spectrum obtained from the CSE model will be
wider compared to the spectrum obtained from
the ROM model with the cutoff frequency
wco = V8aw,yy?, and its intensity drop is also
smoother. Ultra-short pulses also can be
achieved by filtering the low frequencies of the
spectrum. [42].

111.DESICCATION

Particle-In-Cell simulations (PIC) are well-
established tools for the kinetic treatment of
several topics related to the interaction of high-
intensity pulses with plasmas. They self-
consistently treat the underlying physical
processes albeit for a reduced number of
dimensions, in most cases in one dimension.
Despite this shortcoming, PIC codes have
helped to understand some details associated
with the generation mechanism of high
harmonics in overdense plasma [44-49].

In order to obtain desired ultra-short pulses, a
very wide and flat spectrum of high harmonics
must be generated. The initial conditions are
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important in order to obtain the desired
spectrum. The incident pulse is regarded as Ti-
Sapphire laser (10=800nm) which is the most
famous femtosecond laser in the laser-plasma
applications. The researches indicate that very
low cycle pulses can produce wide spectrum
[32,33], therefore, one cycle pulse with the
duration of =24 w=2.7 fs is regarded. In order
to produce single atto-second pulsevia nano-
bunch, Briigge et al., have proposed the desired
initial conditions as the P polarized ultra-
relativistic beam, which impact on plasma with
incident angle as 63 degrees. The desired
electron density is also proposed as n, = 95n,,
[33]. The normalized intensity parameter is
regarded as a, = 40 with the carrier-envelope
phase as @ gp = 180° and the target material is
considered to be Aluminum [28,29, 33], also
the desired plasma thickness is regarded equal
to L = 0.651, and the ions are regarded as
mobile. Regarding the mobility of ions in the
ultra-relativistic regime, improved the spectrum
considerably. The nano-bunch which is formed
in the plasma — vacuum boundary is shown in
Fig. 1. As it is shown the distribution of
electrons is localized with the peak of
nanometer width.

£ 6000
£ 5000
Q
5 400
g 3000 38 nm
£ —>|
= 2000
1000
0
350 40 450 s X/1o

Fig. 1. Localized distribution of electrons (hano-
bunch) which are formed in the plasma-vacuum
boundary. Here 4, is 800 nm.

Figure 2 shows the spectrum of the obtained
high harmonics. The results indicate the
broadband spectrum of harmonics with a
frequency range of Aw = 2000w, The
attosecond pulse train which is produced in the
reflection from the plasma surface, is shown in
Fig. 3. According to the uncertainty principle,
for the spectrum with a high-frequency width, a
pulse with an ultra-short time-width can be
produced in the case of optimal coherence.
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Therefore, in order to have sub zeptosecond
pulses, Aw must be in the order of 10*° Hz and
a very broadband spectrum is needed, i.e., for
the incident pulse of Ti-Saphhire laser
(40=800nm), high harmonics must be generated
at least in the order of 2000 harmonic. Another
critical point is that this spectrum must be flat
as much as it is possible.
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Fig. 2 The spectrum of harmonics which are
generated in the plasma- vacuum boundary

-
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Fig. 3 Attosecond pulse train based on the inverse
Fourier transform of Fig. 2. Here 7, is the duration
of incident pulse and it is equal to 2.7 fs.

To obtain the ultra-short single pulse different
filters are applied for the spectrum of Fig. 2.
Initially, two first harmonics are filtered
completely then the different functions are
tested to filter the spectrum and it is found that
the exponential function is the best. This
function is founded as:
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f(w/wo) =1+ exp(=((alw/wo) — B)/V))

with the coefficients as o=1, £=3.19, and
7=0.01. The single pulse of 270 zs is obtained
which is shown in Fig. 4. The time is
normalized to t, the duration of incident pulse.
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Fig. 4 Single zeptosecond pulse with time- width of
270 zs

V. CONCLUSION

The interaction of ultra-relativistic laser with
overdense plasma based on the Coherent
Synchrotron Emission (CSE) model and in
certain conditions leads to the desired nano-
bunches which produced the flat and very wide
spectrum up to 2000™ harmonics. The initial
conditions are regarded as the laser pulse of
Ti:Saphhire laser, the carrier-envelope phase as
@cep = 180° and linear P polarization whith
the incident angle of 63°. The plasma electron
density is n, = 95n,,, the plasma thickness is
equal to L = 0.654, and the motion of ions is
regarded in the simulation. Applying the special
exponential filter leads to a cleanly isolated
zeptosecond (270 zepto-seconds) pulse.
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