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ABSTRACT— A generalized Born-Markov 

master equation for describing inelastic 

tunneling under non-equilibrium interaction is 

recommended. Rate equations are extracted and 

analyzed for reaching maximization in tunneling 

rates. Possible rooms for reviving quantum 

coherence despite the role of the environment 

have been surveyed. The scheme extended in this 

article can provide a general framework for the 

analysis of quantum tunneling in different 

realms of quantum optics and quantum biology. 

It is shown how the non-equilibrium character of 

the system-environment interaction may 

strengthen the chance of predominance 

probability of occurrence of inelastic tunneling 

against elastic tunneling despite the usual 

expectation.  

KEYWORDS: Inelastic tunneling, Open 

quantum systems, Born-Markov master 

Equations, Non-Equilibrium Rate Transfers. 

I.INTRODUCTION 

Nowadays, the theory of open quantum systems 

is among the most powerful frameworks hired 

to investigate the dynamics of quantum systems 

in real conditions in interaction with their 

environments. Quiet often, the delicateness of 

quantum superposition hindered the isolation of 

its evolution independent of the effects of 

environments. Despite the trivial role of 

environments in classical mechanics just as a 

source of noise, in the quantum realm, the 

reciprocal role of interaction of system-

surrounding does have a significant impact on 

the interpretation of quantum state both 

empirically and conceptually [1-3]. 

Decoherence theory tries to unravel various 

aspects of such interaction. Interaction with the 

environment suppresses the quantumness at the 

level of the system’s evolution and provides us 

with an effective dynamical map to explain the 

quantum-to-classical transition without 

referring to collapse postulates [1]. In 

experience, the openness of quantum systems is 

the main source of the fragility of superposition 

[4]. A critical issue against making stable 

Qubits necessary for developing quantum 

computers is the next expected revolution in 

science [1ch7,5]. The focus of emerging field 

Quantum Control is extensively focused on 

engineering the quantum-environment 

interaction in a way that, the preservation of the 

quantum behavior of the system can be possible 

in spite of the destructive role of environments 

[6-8]. In quantum optics, wherever one tries to 

study dissipative phenomena, the implications 

of open quantum systems theory should be 

inevitably taken into account [9,10]. In 

quantum biology, the openness of biological 

systems demands that decoherence theory be 

included where the quantum origins of 

biological systems are aimed to be surveyed 

[11-13]. 

Master equations are effective dynamical maps 

that summarize the underlying physics of 

system-environment interaction which are 

widely used in quantum optics problems [14-

16]. They add new terms to the well-known 

Liouville unitary equation that transforms it to 

a non-unitary evolution dynamic which 
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ascribes the irreversibility of the disappearance 

of quantum interference when the quantum 

systems are monitored by an environment with 

uncountable degrees of freedom [1 ch4, 2 ch5-

7]. There are different kinds of master equations 

among them Lindblad [17], Born-Markov [18] 

and Redfield equation [19] are the most 

customary. 

Considering non-equilibrium effects in the 

dynamics of open quantum systems [20,21] is 

another vivid branch of quantum sciences 

categorized under the Quantum 

Thermodynamics theory [22-25] that efforts to 

search for the validity of thermodynamics rules 

at the microscopic level or for the systems by a 

few degrees of freedom. Since the temperature 

is not exclusively present in the Schrodinger 

equation, the only way to introduce it is to 

involve interaction with the environment which 

is considered to be a collection of harmonic 

oscillators at thermal equilibrium. The main 

claim of such studies is that the mutual effect of 

two or many baths with a quantum system can 

be stacked in trade for bringing Schrodinger’s 

cat to life which will open new ways for 

reviving quantum superposition for use in 

computation and different optic techniques. 

All problems which are modeled in standard 

quantum mechanics can be tackled in an open 

system framework, too. Among them, inelastic 

tunneling is our concern in this work. In 

inelastic tunneling, a quantum object tunnels 

from a barrier and the difference between the 

energy of the donor and the acceptor sites in 

which the object resides hires to excite 

vibration or electronic states of another object 

placed in the gap of the two terminals [26]. 

Inelastic tunneling has been surveyed widely in 

optical research [27-30]. Inelastic electron 

tunneling spectroscopy (IETS) uses inelastic 

tunneling for analyzing the vibration of 

molecular absorbers on metal oxides [31-32]. It 

is a powerful tool for understanding nano-scale 

and molecular junctions. Active optical 

antennas can be driven by inelastic electron 

tunneling [33]. Excitation of spin degrees of 

freedom of an adsorbed atom by inelastic 

tunneling electrons is surveyed in [34].  

In quantum biology, inelastic tunneling of the 

electron is considered a possible explanation for 

the sensitivity of olfactory receptors on the 

structural properties of odorants [35-37]. Since 

the action at non-equilibrium conditions is a 

hallmark of the evolution of living systems, 

having a framework that addresses this trait for 

studying possible quantum effects could be 

worthwhile. 

In this study, we present the dynamics of an 

open quantum system in the barriers 

undergoing inelastic tunneling of the electron at 

non-equilibrium conditions. A quantum optical 

master equation has been extracted that gives 

quantum rate equations between different levels 

of the open system. We try to elucidate in what 

manner the rate equations can be updated for 

non-equilibrium conditions. In Section I, we 

introduce the model. Details of the calculation 

of the master equation are given in Section II. 

The results of the quantum rate equations and 

the analysis of them is summarized in Section 

III. The model is experimentally verified in 

Section IV. The results and the future 

perspectives are summed up in Section V. 

II. ANALYSIS METHOD 

To present a model that absorbs the essential 

features of inelastic tunneling under non-

equilibrium conditions, we suppose that a 

donor-acceptor pair exists with sites D , A

on which the electron resides. The donor and 

the acceptor are coupled respectively with two 

environments that are in thermal equilibrium at 

temperatures ,H CT T . The environments consist 

of bosonic modes characterized by creation and 

annihilation operators 
i i i i

† †
b ,b (c ,c )  for a bath 

in ,H CT T  temperatures where the frequency of 

bosonic modes is i . The object modes in the 

gap of the donor and the acceptor are 

represented by 
†

a,a  with frequency 0 . The 

donor site with energy D  is coupled to the left 

bath at a higher temperature with a coupling 

constant iD  and for the acceptor with the 

energy A  the corresponding constant is iA . 

The tunneling coupling parameter is . As a 
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result, the Hamiltonian of the system can be 

defined as: 

 

  

 

 

0

ˆ
A D

i i i j j j

i j

A D

iA i i

i

iD j j

j

 



  

 









 

 

 





† † †

†

†

†

H A A + D D +

A D + D A

+ a a + b b + b b +

A A + D D a + a

A A b + b

+ D D c + c

 (1) 

To confine the dynamics of the object to D,A  

states, one requires that the tunneling frequency 

 be small compared to the other energies that 

are present in the system. In this limit we are 

allowed to transform the Hamiltonian Eq. 1 to a 

polaron-transformed picture with the help of a 

unitary operator 
 1 2

ˆ ˆt
e
 Π +Π

U =  by the following 

form: 

 
Fig. 1. Schematic representation of the inelastic 

tunneling under non-Equilibrium conditions. Top: 

The quantum object can be modeled by a harmonic 

oscillator interacting with a collection of bosonic 

modes, a quantum bath, at different temperatures. 

Bottom: Tunneling of electrons from donor to 

acceptor excites vibrational modes in the quantum 

system. 

  

 

 

1 1 2

2

ˆ

ˆ
iD i i

i

jA i i

j

 













†

†

†

Π = A A + D D a a ,

Π = D D b -b

+ A A c c

 (2) 

where, 
( ) ( )

1 2 ( )

0

, .
A D iA iD

iA D

i

 
 

 
( ) =  The 

polaron transformed Hamiltonian 
ˆ ˆ†

po
H = U HU  splits automatically to diagonal 

0
ˆ

po,
H  and non-diagonal ˆ

po,int
H  interaction 

Hamiltonians as follows: 

0

0

ˆ
A B

i i i j j j

i j

 

  



  

po,

† † †

H = A A + B B

a a + b b + b b
 (3) 

By, 2 2 2

( ) ( ) 0 1(2) ( )A B A B i iA D

i

         and, 

   

   

†
1 2 1 2

1 2 1 2

ˆ

h c

h c

e

e

   

   


  

 

  



 
 
 
 

†

po,int

a a

a + a

+

H =

D A Λ Λ +

A D Λ Λ

 (4) 

where, 

  ±

± ( )

iA iD

h c e
  † †b (c ) b(c)

Λ = . 

Using time dependent interaction Hamiltonian 

0 0
ˆ ˆ

ˆ ˆ( )

it it

h ht e e
po, po,H - H

po,int po,int
H H , one can generate 

the master equation which encapsulates the 

dynamics of the reduced density matrix of the 

quantum object ( )s tρ , The time dependent 

density matrix in the interaction pictures 

obtains as:  

   
   

     

 

   

     

0 0
1 2 1 2

0 0
1 2 1 2

0 0
1 2 1 2

0 0
1 2 1 2

2

0

( )

( )

A D

i t i t

i t i t

A D

i t i t

i t i t

i

s

s

i

s

t d e

e

e t

e

e

e t

 

 

  

   

   

  

   

   

 





 




  

  



  

  

 

 
  
 
 

 

 
  

  




ω - ω†

ω - ω ( - )†

ω - ω†

ω - ω ( )†

e a + e a

e a e a

-

e a e a

e a + e a

ρ =

A D

D A ρ

D A

A D ρ

  h c + .

 (5) 
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where     stands for the correlation function 

of the environments and contains information 

about the partitioning of frequencies in bosonic 

baths: 

        0 ( ) 0
h cc h h h c ctr t t      ,= Λ ρ Λ Λ ρ Λ

 (6) 

where tr  means trace over environmental 

degrees of freedom. 
( )h cε,

ρ  represents the 

density matrix of two baths which are 

considered to be in thermal equilibrium. 

Using      1 2Im

1 2 1 2

i
e

    
*

D D = D  where 

 D α stands for displacement operator, and: 

 

 

 
2

exp ( ) ( )

exp coth
2 2

j

i i i

i i

B

t t

t h

k T

 

 

 

 
 
 
 

ε

† *

ρ
a a

 (7) 

where Bk and T are Boltzmann constant and 

absolute temperature, respectively, the 

correlation function of Eq. 6 reduces to: 

 

 
 

 
 

2

0

2

0

1 cos( ) coth sin( )
2

1 cos( ) coth sin( )
2

H

B H

C

B C

J h
d i

k T

J h
d i

k T

e

e

 
  



 
  



 





  
     

  

  
     

  


 




 (8) 

where  J   is the spectral density of the 

environment that reads as: 

     
2

iA iD k

k

J          (9) 

There are several ways of defining spectral 

densities. Usually, the frequency dependence of 

 J   is taken to obey a power law of the form 

  sJ   . The familiar choice is 1s   known 

as Ohmic spectral densities. Less important 

cases of interest are sub-Ohmic 1s  and super-

Ohmic 1s  . To be physically reasonable, most 

often,  J    multiplies by another function 

to avoid an increase in the frequency of bosonic 

modes without bound. Typically, linear 

dependency of spectral density holds just for 

lower frequencies and after crossing a cut-off 

frequency , subsides at higher values of . A 

Lorentz-Drude form [38]  
2

0 2 2
J


 






 
 

or   0J e



 






 are of the most interest. 

The coupling constant 0  is a measure of the 

interaction strength between bosonic modes of 

the bath and the quantum system. 

Master Eq. 5 has been derived under two 

approximations and is known as the Born-

Markov master equation [39,40]. According to 

the former, the interaction between the system 

environment is considered to be weak enough. 

Then, the combined density matrix of the 

system environment can be decomposed to for 

all the time intervals of interaction. Due to the 

latter, because of the large Hilbert space of the 

environment in comparison with the system, the 

memory effect in the environment can be 

considered to be negligible. As a consequence, 

the correlation function     decreases rapidly 

in time in comparison with natural frequencies 

in the system. However, one should keep in 

mind that, negligibility of memory effects does 

not omit the characteristics of the environment. 

Since, after tracing on bath, traits of the 

environment, remain in the functionality of 

    functions. Since the two environments 

have different temperatures, their non-

equilibrium character of them affects the 

dynamics of the system eighter. 

Introducing Born and Markov approximation 

transforms master equations into local in-time 

differential equations which can be tackled 

analytically. 

III. RESULTS AND DISCUSSION 

Let’s assume that at the initial time, the electron 

resides on the donor and the quantum object, 

represented by a Harmonic potential, is in the 

ground state. Then we can follow the tunneling 

of electrons accompanied by excitation of the 
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vibrational mode of the quantum object 

according to D,0 A,n . We can define the 

general form of the density matrix of the Donor-

Acceptor-Quantum object as: 

   , , ,h h m nt t
Sρ ρ h,m h ,n  (10) 

where  ,h h D,A and ,m n stands for Fock 

states of QO. We search for populations where 

the tunneling of the electron has been 

completed. In other words, when populations of 

the acceptor have been taken into account. 

Accordingly, we first make  tSA ρ A due to 

the master Eq. 5 and then trace over the two 

environments to obtain the reduced state of the 

QO. Particularly, we assume that the energy 

splitting is large enough that hinders excitation 

to any other Donor-QO states. To be more 

specific we limit our analysis to only Donor-

QO states with no QO excitation at the initial 

condition. As a result, the rate of transitions of 

the form D,0 A,n integrates as: 

 

 

2
1 2

2
0

2

1 22

0 ,

-

!

A B

n

n
D A

i n

e

n

e d

 

     

 




 





   




  

 

 (11) 

where 
0 0 0

H CJ     is the sum of coupling 

constants and   is summarized to: 

0 0

H C

H CB H
H C

H

k T

h
 

    

 
    

 

 

3

1 1
...

6 30

B C C C

C B C B C

k T h h

h k T k T

   
     
    

 (12) 

In doing Eq. 12,   0J e



 






 is assumed 

and the Taylor’s series of coth
2 B

h

k T

 
 
 

 for the 

environment with lower temperature is taken. 

Also, it is supposed that the regime that we are 

presently interested, is where the correlation 

functions are progressively peaked around 

0  . Consequently, in doing time integrals we 

are allowed to time dependent function in 

integral Eq. 11 up to the second order in .  

Figure 2 shows the change in parameter  

against temperature, for different proportions of 

H CT T . As seen, it grows faster for negligible 

differences between temperatures of the 

environments for a fixed value of cut-off 

frequency.  

 
Fig. 2. The change in  for different amounts of 

H CT T  is followed against ( ) ( )Bk T h . Where 

H CT T  is lower  raises up faster for a fixed value of 

cut-off frequency . 

Figure 3 depicts the rate of in-elastic (Blue-

Red) and elastic (Dashed) tunneling rates 

against  for different amounts of 
0 0 1,2, ,J   . 

It admits that in-elastic tunneling rates could be 

predominant in precise portion of the above 

parameters. In regions where the sum of 

coupling constants, natural frequency of the 

system and the difference between energy sites 

of the donor and the acceptor, represented by 

0 0 1,2, ,J    respectively, have the same order of 

magnitudes, elastic tunneling rates can be 

overcome in all regions of . The Blue plots 

show inelastic rates for 0 2 and red for 

0 1  excitation. 
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Fig. 3. Rate of inelastic tunneling is depicted for 0 1 and 0 2 excitation in vibrational mode of the quantum 

object for different amounts of 
0 0 1,2, ,J    against . The dashed line describes elastic rates where the quantum object 

is absent. Inelastic rates are dominant for larger values of 
0J and lower .  

As a noticeable result, excitation rates to higher 

modes of vibration of the QO, facilitates where 

the non-equilibrium character of the dynamics 

is taken into account. In the region in which 

coupling constants and natural frequency of QO 

are comparable and larger than the energy 

difference of donor-acceptor sites, inelastic 

rates are predominant for a different selection 

of temperature differences introduced by. For 

higher  inelastic rate of 0 1  approaches 

to elastic rate where the QO is absent (Bottom-

Left). The same occurs for 0 2  inelastic 

rates where the 0  and 1 2  are comparable 

and lower than coupling strength between 

system and the environment (Up-Right).  

Figure 3 admits that larger values of 0J  is 

necessary for the dominancy of inelastic 

tunneling which implies that interaction with 

non-equilibrium environments with different 

coupling strength opens rooms for the 

augmentation of inelastic tunneling. Also, such 

dominancy is effectively present where the 

parameter  accepts lower values. According to 

the analysis of Fig. 3, it is in correspondence 

with a larger difference between the 

temperatures of the two environments. As a 

consequence, an increase in the non-

equilibrium character of the environments 

results in more chances for overcoming 

inelastic rates of tunneling.  

In Fig. 4 we search for the importance of the 

role of coupling constants and temperature in 

priority of inelastic against the elastic rate of 

tunneling. As can be inferred, where the 

temperature difference is not significant, 

excitation in lower modes of vibration, 

0 1  takes larger values in lower coupling 

strengths. As coupling becomes large, 

excitation to higher modes, for example 

0 2 , overcomes. The same is true where 

the temperature of the two baths approaches to 

gather. However, in this limit, the maximum 

rate for 0 2  excitation becomes larger 

than the corresponding rate for 0 1  

transition. As a consequence, a very neat 

selection of coupling strength and temperatures 
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is necessary for the maximization of inelastic 

tunneling rates. 

 

Fig. 4. Inelastic rates for 0 1  (Red) and 

0 2  (Blue) excitation is depicted for different 

values of . Larger coupling strength needs for 

having effective inelastic tunneling that accompanies 

in excitation in a higher mode of vibration.  

Investigation of tunneling under non-

equilibrium conditions has been surveyed in 

recent years and attracted attention in the 

physics community. The general consistency 

that non-equilibrium condition is a determinant 

factor in amplification and maintenance of 

quantum behavior in microscopic systems can 

be reproduced according to the results 

discussed above. 

In [41], the presence of non-equilibrium effects 

is introduced as the reason behind the 

anisotropic relaxations in inelastic tunneling 

processes. A many-body inelastic quantum 

tunneling under non-equilibrium conditions for 

the non-Maxwell-Boltzmann distribution of 

baths is discussed in [42]. It shows that long-

range tunneling between arrays of cold atoms 

may be accessible under non-equilibrium 

conditions. Dushmukh and colleagues have 

shown that tunneling through metal nano 

particles can be mediated under non-

equilibrium condition where many states of the 

acceptors are provided for the electron [43].  

Facilitation in quantum transport in solid-state 

systems under the non-equilibrium condition is 

also extensively discussed in [44] and the 

references therein where in such studies the 

theory of open quantum systems under the 

approximations used above are assumed, too. 

IV. EXPERIMENTAL VERIFICATION 

OF THE MODEL 

Inelastic tunneling is one of the fascinating 

quantum phenomena that can be find its 

empirical realization in some physical contexts. 

Inelastic electron tunneling spectroscopy is 

among well-known examples [45]. In the lab, 

we can provide two metal plates where a bias 

voltage is applied to the two contacts. They are 

characterized by a density of states filled up the 

Fermi energy. The junction of the two metals is 

filled by a molecule, a quantum object in our 

terminology.  

 Fermi states can be in resonance with some 

states on the molecule in junction that roles as 

the donor and acceptor sites, named by D and A 

in our formalism. When the quantum object is 

absent, the electron on the metal terminal tunnel 

through the gap and the resulting current will be 

monitored against the change in the voltage of 

the source. In the presence of the molecule, 

some of the electrons lose their energy while 

tunneling those results in excitation in the 

vibrational modes of the molecule. As a 

consequence, it gives an additional current 

contribution to the aforementioned current that 

can be tracked in the second derivative of the 

current against the voltage. The intensity of the 

inelastic peak is directly dependent on the 

quantum rates obtained in equation (11). To 

provide non-equilibrium conditions, the metal 

terminal can be attached to the thermostat with 

definite different temperatures.  
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Fig. 5. Inelastic tunneling can be realized in 

experience by imposing a variable voltage on two 

metal terminals (Left Up) and monitoring the 

tunneling current against the voltage where the gap 

of terminals is filled by a molecule (Right). The 

inelastic current effect appears in the second 

derivative of current against voltage and its intensity 

corresponds with tunneling rates extracted in Eq. 11. 

The schematic of the figure is presented in [45] 

Accordingly, the theoretical results presented 

above may be found in their empirical 

verification under experimental constraints. 

V. CONCLUSION 

In this study, we have generalized and proposed 

analysis for the examination of inelastic 

quantum tunneling under non-equilibrium 

conditions. Circumstances under which the 

inelastic tunneling can be overcome on elastic 

one is thoroughly scrutinized. It is verified that 

the non-equilibrium essence of the system-

environment dynamics, summarized in larger 

values of 0J  and lower values of  increases 

the chance of predominant inelastic tunneling. 

It is shown that excitation in a higher mode of 

vibration can be reached under non-equilibrium 

conditions for a detailed selection of 0J ,  

amounts. Since inelastic tunneling is a basis for 

developing quantum microscopy techniques, 

this work hopefully shed new lights on 

extending the limit of applicability of such 

devices were working at non-equilibrium 

condition has been considered. We expect that 

our analysis can be used in experiments to 

examine the validity of the dissipative quantum 

model of inelastic tunneling.  
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APPENDIX  

For the calculation of rate constants, the 

following integrals have been used: 

   10 0

0

sin tane d
 

  


 

  
   (A.1) 

 

 
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 






 

  


  
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h
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



 











 
   

  
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 

  
 

  
 
  

 

Also, in doing time integration introduced in 

Eq. 5, some approximations, in addition to 

Born-Markov approximations, are made to 

obtain analytical results. We have supposed that 

the regime we are presently interested in is 

where the correlation functions are 

progressively peaked around 0  . 

Accordingly, time integration up to the second 

order in  are enough in doing integrals. Hence, 
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 1tan       and  
2 2

1 cos
2

t
  is 

assumed: 

2

2
4

S

iS P Pe d e
P

  


 

 



  (A.2) 
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