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ABSTRACT— We investigate the propagation of
the normal two-photon number state and
coherent state of light through a dispersive non-
Hermitian bilayer structure composed of gain
and loss layers, particularly at a discrete set of
frequencies for which this structure holds PT-
symmetric. We reveal how dispersion and
gain/loss-induced noises in such a bilayer
structure affect the antibunching property of the
incident light. For this purpose, we have
calculated the second-order coherence of the
output state of the bilayer. Varying the loss layer
coefficient, we show that the antibunching
property of the incident light only retains to some
extent, for small values of loss coefficient for the
transmitted number state.

KEYWORDS: Antibunching, Coherent state,
Non-Hermitian, Number state, Parity-time
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l. INTRODUCTION

Parity-time (PT-) symmetric systems are non-
Hermitian but can exhibit entirely real spectra
as long as they respect the conditions of PT-
symmetry [1], [2]. A PT-symmetric
Hamiltonian is invariant under the combination
of the parity operator, P, — i.e., p»—p and
r-—r — and the anti-linear time-reversal
operator, T, — i.e., p»—p and r—»—r and
i-»—i — implying the satisfaction of the
condition V(r)=V*(-r) for the complex
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quantum potential, V(r) should satisfy [2]. In
other words, the real (imaginary) part of the
potential, is an even (odd) function of position
r. Although complex quantum potentials do not
exist in nature [2], their analogs have been
realized in optical systems owing to the formal
equivalence between the time-dependent
Schrodinger equation and the optical paraxial
wave equation. In this equivalence, an
artificially made refractive index, n(r), plays the
role of the potential, particularly in
multilayered photonic metamaterials with
balanced gain and loss,  satisfying
Re{n(r)}=Re{n(—r)} and
Im{n(r)}=—Im{n(—r)}. Such metamaterials
render non-Hermitian systems with real
eigenvalues [3]-[5]. The two latter relations,
together, solely represent the necessary
condition for the so-called exact phase regime.
Nonetheless, beyond a critical value of
gain/loss  strength  (i.e., the so-called
exceptional point), the system eigenvalues
become complex, in which case the system is in
a broken PT-symmetric phase [1], [2].

The effects linked with PT-symmetric systems
have been investigated comprehensively in
classical optics during the past decade [6]-[10].
It has been revealed that these media can exhibit
exotic features, like optical switching [6],
nonreciprocal propagation [7], reflectionless
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unidirectional transmission [8], and optical
isolation [9].

For the incident light of a nonclassical nature,
there are some features such as quadrature
squeezing, photon statistics, and second-order
coherence that can only be described in the
framework of the full quantum theory. Over the
past decade, only a few research groups have
focused on the nonclassical effects of the
propagation of the optical pulses through
structures that hold PT-symmetry [11]-[17]. In
our recent work [16], we have extensively
studied the behavior of obliquely incident s-
and p-polarized quantum states after
transmitting through dispersive non-Hermitian
multilayered structure, particularly at discrete
frequencies that the medium holds PT-
symmetry. We have investigated to see to what
extent the transmitted light could retain its
original nonclassical features, like the
squeezing and sub-Poissonian photon statistics.
Our findings show one cannot implement PT-
symmetry at any arbitrary angle of squeezed
states of incidence for either polarization in the
guantum optics domain as far as the squeezing
feature of outgoing light is concerned.
Although this situation is changed if one only
probes the sub-Poissonian photon statistics of
outgoing light, it seems the structure whose
incidence frequency is far from the emission
frequency of the gain layer. Here, we focus on
the second-order coherence of the normally
transmitted coherent and M-photon number
states through a dispersive non-Hermitian
bilayer medium, which holds PT-symmetric at
a particular frequency. Besides, we study the
effects of the dispersion and the loss(gain)-
induced noises on the antibunching property of
incident light for various loss coefficients to
study the coherence modifications with time
delays between two temporally separated
intensity signals with the time difference from
one input.

1. METHOD

A. Bilayer Structure

We consider a bilayer structure that is
composed of two gain and loss slabs of identical
thickness | (and infinite extent along the x and y
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directions) paired along —I<z<0 and 0<z<I,
respectively. The bilayer is embedded in a
vacuum for |z|>| (Fig. 1). Here, the complex
permittivity of the gain/loss (g/l) slabs can be
written as [18], [19],

Qyn@ogn Vgn

2 2 H )
" =Wy, HloY

1)

Eqi (a)) =&ogn

where o represents the medium background
permittivity, wo is the emission frequency, yg
indicates the gain/absorption linewidth, and ag
is the gain/absorption coefficient. Due to the
causality principle, the loss slab parameters
satisfy «>0 and >0, while those of the gain
slab satisfy ag<0 and yq>0. To guarantee the
structure to be PT-symmetric, we require an
exact balance between the gain and loss of two
slabs as follows:

Reg,(w) =Reg () and Img, (0) =-Imeg (o).
)

which can be satisfied only for a discrete set of
real frequencies [20].

\R) )

;i

Fig. 1. A 3D representation of a non-Hermitian
bilayer structure consists of gain and loss slabs with
an identical thickness of | along the z-direction. The
arrows normal to the x-y plane represent the bosonic
operators of the input and output modes.

B. The Exact Multilayer Theory

Consider an optical beam of light normally
incident upon the bilayer. According to the
canonical quantization of the electromagnetic
field in the presence of a medium, the positive
frequency component of the electric field
operator is [21]:
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ED(z,t)= iJ‘OOOda)e*""t {«/hw/él/zgocA X

. _ _ , )
x(agn (z,0)e" + &Y (2, 0)e™"" )}
where 7, ¢y, A, and c are the reduced Planck’s
constant, the vacuum permittivity, the area of
quantization in the x-y plane, and free space
light velocity, and R(L) denotes the right (left)
going propagation wave. The negative
frequency component of the electric field
operator is obtained by taking the Hermitian

adjoint of (2) —i.e., E;7(z,t)=E;V(z,t).

An explicit characterization of the structure can
be obtained by assigning the input-output
mapping that links the output bosonic

annihilation  operators  4(-l,®) and
a" (I, w) with their input operators &% (-, )
and 4 (l,®) , and also the noise operators,
Fey (@), as follows [22]-[23],

49 (L)) (a0 ()} (F (o)
(ég) (+, a))] - S(a{‘“ (+, a))] +[|fR (a))} (4
where S = (rtL rt } (4b)

Moreover, the multiple transmissions t and
right(left) reflections, rry of the incident light
through/from the bilayer binaries at —/and | are
described by the same scattering matrix So
analogous to the classical optics. Albeit, the

A

quantum noise Fg, originating fromall layers

with either gain or loss has no classical
analogous. The optical input operators satisfy
the bosonic commutation relations:

[ég) (),80" (a)’)] - [éf” (), &"" (a)')} (5)
=6(w-a').

substituting Eq. (4a) into (5) results in a similar
bosonic commutation relation for the outgoing
operators:
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[ééf’ (o),80" (a)’)] = [é(Ll) (w),a"" (a)'):l (6)
=6(w-w').

I1l. THE SECOND-ORDER
COHERENCE

To illustrate the effects of the bilayer structure
in quantum optics, we consider the specific case
(same as those used in [13]-[19]) that satisfy the
necessary condition for the PT-symmetry
system in (1)-(2): wo=wog=1 PHz, y1=y¢4=0.067
PHz, and ep=goq=2 i.e., (Ae=0), we achieve PT-
symmetry at wet/wog=1 for arbitrary values of
|ag|=cu. The thickness of the loss/gain slab along
the z-direction is 10 nm. A practical example of
the proposed bilayer structure could be the
plasmonic metamaterial suggested by [24]-
[26], grown on a lossless glass substrate
wherein the quantum noise flux vanishes.

In what follows, we use the above parameters
to numerically analyze the structure under
study. We know that the thermal noise effect at
room temperature and zero Kelvin, for the
given incident frequency, are both insignificant
[15]. Henceforward, we consider keeping the
gain and loss layers at 0 K. In this section, we
study how the second-order correlation
function [21]

9°(z,t,7)=
(B9 (2)E (z,t+7)EY (2,t+7)EW (2,1))

(E® (2 ) E® (2,0))(EV (,t+7)EW (z,t+7))
()

of a quantized electromagnetic field is modified
by the passage through the structure of Fig. 1.
The intensity correlation in (7) is proportional
to the joint probability of detecting photons at
two times t and t+z. This function quantifies,
how the detection of one photon from a light
source influences the probability to detect
another one. It usually decays to 1 on timescale
T comparable to the coherence time of the light
field. The intensity fluctuations for the
transmitted light already allow one to
distinguish between bunching (g®@(z=0)>1),
coherent (g®(z=0)=1)), and antibunching
(9@ (z=0)<1) (quantum features of light) light
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emission. If the arrival of one photon is detected
then there is an increased possibility of another
photon arriving soon afterward. This
phenomenon is called photon bunching. In
other words, photon antibunching is the
tendency of photons to gather together
randomly in time rather than appear in groups.
The important difference between the classical
and quantum mechanical description is that, in
the latter case, the detection of a photon at t
reduces the number of photons at 7+z. In the
following, we investigate (7) two transmitted
M-photon number states and coherent states
through the structure of Fig. 1.

A. Number State

The general state of the system is represented
by the product state of the form

[v)=IM.¢).[0),[F)- ®)

in which |0)L and |[M,&)r, are the left-going
vacuum state and right-going number state,
respectively, and |F) is associated with the noise
contribution of the slab arising from amplifying
slab at zero temperature. The number state can
be generated with the use of a quantum operator
acting on the vacuum of the form [21]

R)=IM.¢)=
1

T [ 402 (@) ()] o)

where &(w) describes the frequency distribution
of the photon-number wave packet, whose form
is determined by how the photon state is
prepared such as the nature of the incident light
and any subsequent filtering process. Here, we
consider a Gaussian wave packet distribution
centered on the frequency wpr and the mean-
square spatial length L2 as [21]

E(w)=(L*/2xc? )1/4 exp[—L2 (-4 )2/4(:2}

(10)

©)

After some lengthy mathematical
manipulations using (3) and (7)-(10), one can
obtain a compact formula for the second-order
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correlation function (7) in region 4 for the
transmitted number state at t=z/c as

g® (1) =
{M(Mm- 1)I'l( ||I |

r)]+||2(r)|2 +12(0

ONML (f +1, 0))
(11)

N—
———

where in the explicit forms of the Iy and I are,

l,(7)=. /h/4ﬂgocAj:dwe_iw’ o t(w)é(w),

(12a)

(7= gcAj doe™ o (F] (o) F, (o))
(12b)

where <FRT(a)) IfR(a))> is the average flux of

the noise photons, which is given by (B7) in
[15] for the exact multilayer theory. The
dependency of the second-order coherence (11)
on the dimensionless time delay, 7 wer, is
plotted in Fig. 2 for a two-photon Gaussian
wave packet transmitting through the proposed
structure. For the sake of clarity, we focus on
four special values of loss coefficients, i.e.,
lag |=u=24, 114  (anisotropic  transmission
resonance), 52 (accidental degeneracy), and
890  (exceptional point)  which their
significances are given in [15].

The results show that the transmitted light is
antibunched for |ag |=u=24, 52, and 114. Then,
by increasing z, each plot for the given angles
first increases sharply and reaches a maximum
value, approaching a near-unity value,
saturating for - wer>1.5. While for |ag|=a=890
and 1=0, g®(0)=2 due to the noise dominating
the pulse contribution at elevated . Our results
show that despite the apparent compensation of
the losses within the bilayer in the PT-
symmetry phase, the outgoing light is no longer
antibunched for |ag|=0u=890. Because the gain
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layer adds noise to a beam of light at zero
temperature, having detrimental effects on the
antibunching feature of the quantum light.
Therefore, we see that at elevated values of o
the output photons are bunched.

e e e LIS B e o o e e

LI B B N S B B B |
i _0|=24 ..... a|=114 1
C - _a|=52 rv|=890 ]
oLy B
8 "
o 1 - 4
05 S .o PR b Ll | | .
0 15 2 25 3

T Wpr
Fig. 2. The second-order coherence g@(r) versus
r.wpr  for two-photon wave packet transmitted
through the bilayer structure for =24, 52, 114, and
890.

B. Coherent State

One of the most important classes of states in
quantum optics is coherent states. The coherent
state |a) is generally introduced as the
eigenstate of the non-Hermitian annihilation

operator associated with the complex
eigenvalue [27]
aY|a)=ala). (13)

This state can also be represented easily by
operating the unitary displacement operator on
the vacuum state |0),

) =exp| adl" -4 ||0). (14)

The coherent state possesses a better-defined
phase than the number state. Accordingly, it is
described as a state most closely to the classical
kind of behavior.

In this section, we consider that the incident
rightward and leftwards fields on the slab are
the monochromatic coherent state and
conventional vacuum state respectively. Using
the method outlined in [21], and making use of
the input-output relation (4), and after some
algebraic calculations using (3) and (13)-(14),
we obtain the second-order correlation function
(7) in the region 4 for transmitted coherent state
at t=z/c as:
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99(r) =
ILOF 1) +2Re[ 1,(0)1; (2)1,(7)]
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Fig. 3. The second-order coherence g® (z) versus
Twpr for coherent state transmitted through the
bilayer structure for a=24, 52, 114, and 890.

The dependency of the second-order coherence
(11) on the dimensionless time delay, z wer. for
the coherent states transmitting through the
proposed structure with |ag|=ai=24, 52, 114,
and 890. The results show thatast — 0, g? > 1
for all cases of |ag|=a=24, 52, 114, and 890 due
the noise dominating the pulse contribution.
Therefore, for each loss coefficient, we find that
the output photons are bunched, and this
bunching effect enhances slightly as the
loss/gain  coefficient inside the bilayer
increases. Moreover, for large values of z, the
second-order coherence progressively tends to
unity — i.e., g@(r wer>>1)~1, because photon
arrival times are not correlated if the photons
are detected in a larger time intervals.

1VV. CONCLUSION

In this paper, we have investigated the
dispersion and medium effects of a bilayer non-
Hermitian structure on the antibunching
property of a transmitted number and coherent
states of normally-incident light at zero
temperature, particularly at a specific frequency
for which the bilayer holds PT-symmetric. We
have calculated the second-order coherence at
the output of bilayer versus dimensionless time
delay for different values of loss coefficients,
keeping the incident signal frequency fixed at
the corresponding frequency where PT-
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symmetry holds. Although we observe the
compensation of loss effect within the PT-
symmetric bilayer in the exact phase regime,
the transmitted light is no longer antibunched
for large (all) values of loss coefficients for the
incident number (coherent) state. One may
attribute this effect to the contribution of the
quantum noise within the PT-symmetric
structures at w=wyg, originating from the gain
nanolayers at zero temperature.
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