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ABSTRACT— In this article, the temperature
behavior of output power of superluminescent
light-emitting diode (SLED) by considering the
effect  of non-radiative recombination
coefficient, non-radiative spontaneous emission
coefficient and Auger recombination
coefficients has been investigated. For this aim,
GaN pyramidal quantum dots were used as the
active region. The numerical method has been
used to solve three-dimensional Schrodinger
equations and traveling-wave equations. The
spectral width of the gain spectrum in each case
has been investigated. Eliminating the non-
radiative recombination, non-radiative
spontaneous emission coefficient and Auger
recombination coefficients increased the output
power of SLED and in some cases reduced the
negative effect of temperature increase on
output power.
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I. INTRODUCTION

The performance of light-emitting
semiconductors such as light-emitting diodes
(LEDs), laser diodes (LDs) is based on the
forward current p-n  junction  diode.
Superluminescent  light-emitting diodes
(SLEDs) are another type of light-emitting
semiconductors which combine the

characteristics of both, LEDs and LDs, have a
broadband emission spectrum and high output
power. These properties enable the device to
be an excellent candidate for applications such
as Optical Coherence Tomography Systems
(OCT), optics devices testing, fiber-optic
sensors, and speckle-free illumination [1]-[4].

Many types of research have been done on
broadening the bandwidth of the emission
spectrum of SLEDs, including multilayer QDs
structures, Dot in wells (Dwell) structures,
manipulated structures by Strain Reducing
Layers (SRLs), annealing, or other processes.
Using the post-growth annealing technique,
hybrid structures, p-doping in addition to
chirped QD multilayer the spectral width has
been improved and reported many times [5]-
[6]. The special properties of SLEDs based on
nitride components, such as a wide range of
emission  frequencies, high  quantum
efficiency, and higher luminescence, have
given them special attention [7].

Temperature characteristics of SLDs based on
INAs/GaAs QDs multilayers have been
investigated by M. Rossetti et al. [8]. The
improvement of the output power by
application of p-doping in the active region of
QD to increase the modal gain in the presence
of temperature changes has been reported [9].
The temperature dependence of L-I
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characteristics has been surveyed frequently
[10]-[12].

In this research, the effect of temperature on
the output power of SLED has been surveyed
and the role of non-radiative recombination,
spontaneous emission, and Auger
recombination has been shown. The structure
used for this purpose is a GaN-QD based
SLED with bent ridge waveguide with a trench
section as shown in Fig.1.
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Fig. 1. Schematic view of the bent-waveguide
SLED structure.

Il. THEORETICAL MODEL AND
GOVERNING EQUATIONS

Eigen values (eigen states of energy) and eigen
wave functions related to electrons and holes,
in the active region, were obtained by solving
the three-dimensional Schrodinger equation
[13] and the effect of the pyramid shape of
quantum dots was considered in Hamiltonian.

The traveling-wave equation in the one-
Dimensional model can describe the
propagation of optical waves along the cavity.
By applying a theoretical model including a
ridge waveguide structural model
accompanied by QD energy states and
position-dependent rate equations for the
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carrier density, this issue was solved through a
numerical method [13].

The used traveling wave equation in the
steady-state condition is simplified as follows
[14]:

+ D — (D) g(z,t,2) -
hcwd
Aine)PE(2,t,2) + YRp(2,t,2) C;) )

where P* and P~ are the forward and
backward traveling optical power,
respectively. TI' is the optical mode
confinement factor (the fraction of the
propagating field mode confined to the active
region), g is the material gain, o, IS the
optical loss in the cavity, Ry, is the spectral
density of spontaneous emission, y is the
spontaneous emission coupling coefficient, A
is the wavelength, w and d are the active
region cross-sectional width and thickness,
respectively. The power equation in the
steady-state condition is expressed as follow
[14]:

1@ _ [AN(z,t) + BN?(z,t) + CN3(z,t)]
edLw

Tg(z,t,)[P*(z,t,A)+P~(z,t,1)]
+ Z hvpwd (2)

where 1(z) is the bias current and dLW is the
volume of the active region. The first term on
the right-hand side of Eq. (2) is the
recombination rate term, where ‘A’ denotes
the non-radiative recombination coefficient,
‘B’ the non-radiative spontaneous emission
coefficient, and ‘C’ the Auger recombination
coefficient and N is the carrier density. The
second term on the right-hand side of the
equation is the amplified spontaneous
emission (ASE) term.

The traveling-wave Eq. (1) and the carrier
density rate Eq. (2) were solved numerically
and simultaneously to obtain output power
[13].
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III.RESULTS AND DISCUSSION

A. The Effect of Non-Radiative,
Spontaneous Emission, and Auger
Recombination Coefficient

Processes that affect the output of a light-
emitting semiconductor are non-radiative
recombination, non-radiative  spontaneous
emission, and Auger recombination (as seen in
Eqg. (2)). Non-radiative recombination causes a
decrease in semiconductor output power, in
the process of spontaneous emission. If one
can protect exciton from their defects
environment, using methods such as those
shown in [15], then photo-excited electrons are
kept in the core of QDs and cause to
suppression of non-radiative recombination,
Auger recombination, and non-radiative
spontaneous emission.

Here, we present the effect of eliminating non-
radiative recombination, Auger recombination,
and the non-radiative spontaneous emission
coefficient on the output power (Fig. 2.)
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Fig. 2. The output power as a function of bias

current by changing the recombination coefficients
(these data are in temperature of 300K).

In Fig. 2. letter A represents the non-radiative
recombination coefficient, letter B represents
the non-radiative spontaneous emission
coefficient and C denotes the Auger
recombination coefficient.

This diagram  shows the effect of
recombination terms on the output power. In
other words, if we eliminate each of the non-
radiative recombination, the Auger
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recombination and  the  non-radiative
spontaneous emission coefficient the output
power increases. As can be seen from the
diagram, elimination of the non-radiative
spontaneous emission coefficient causes a
significant increase in output power and so we
can consider the non-radiative spontaneous
emission a loss because it radiates in all
directions, only a small part of it is coupled
into the waveguide. On the other hand, the
Auger recombination has little effect on the
output power of SLED.

B. The Effect of Temperature on the Output
Power by Varying the Auger Recombination

In SLEDs, the bandwidth of the gain spectrum
is a key characteristic for evaluating its output
power. Therefore, we first obtain the gain
spectrum for conditions where the Auger
coefficient does not exist and in normal
conditions with the Auger coefficient. Figure 3
clearly shows the changes in the gain spectrum
width.
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Fig. 3. Modal gain spectrum in two conditions;
considering the Auger coefficient and without it.

According to the gain spectra, the full width at
half maximum (FWHM) for these diagrams
was calculated and shows that in the case
without Auger recombination coefficient
FWHM is equal to 23.7 nm, and greater than a
normal condition with FWHM=15nm. Since
more bandwidth is more desirable for the
SLED, we expect to get more output power in
these conditions. Confirmation of this result
was shown in Fig. 2.
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Figure 4. compares the output power
characteristics of a 1200 pum long SLED
versus temperature for the bias current of 400
mA in two cases; a) the Auger recombination
coefficient has its original value and, b) the
Auger recombination coefficient is zero.
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Fig. 4. The output power as a function of bias
current by changing the temperature and the Auger
recombination coefficients

It can be seen that increasing the temperature
reduces the output power because at higher
temperatures carriers are distributed over a
wider range of energy and consequently the
gain decreases. However, by controlling the
Auger recombination this negative effect is
greatly reduced. The diagram of the gain
spectrum at two different temperatures for the
SLED is shown in Fig. 5.
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Fig. 5. Modal gain spectrum in two different
temperatures, 1200 um long SLED and 400 mA

bias current.
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C. The Effect of Non-Radiative
Spontaneous Emission

In this section, the effect of the elimination of
the non-radiative spontaneous emission
coefficient has been investigated. As in the
previous section, the gain spectrum is shown
in two situations. The value obtained for
FWHM in these conditions is equal to 18 nm,
which is also more than the normal condition

(Fig. 6).
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Fig. 6. Modal gain spectrum in two conditions;
considering the non-radiative spontaneous emission
coefficient and without it.

The output power concerning temperature
changes for 400 (mA) bias current has been
plotted in Fig. 7.
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Fig. 7. The output power of SLED for zero non-
radiative spontaneous emission coefficient and by
varying the temperature at bias current 400 (mA).

As can be seen from the diagram, the effect of
eliminating the non-radiative spontaneous
emission coefficient on the output power is
such that it covers almost all the negative
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effects of temperature increase and the output
power results in almost the same at all three
temperatures.

IV. CONCLUSION

In conclusion, the behavior of SLED based on
nitride QDs was shown by changing the
recombination coefficients and considering
temperature changes. The results show that by
limiting and  controlling the  Auger
recombination coefficients and non-radiative
spontaneous emission coefficients the output
power can be increased, which is due to the
increase in the gain spectrum width. So that
the negative effect of temperature increase is
partially eliminated.
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