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ABSTRACT— In this article, the temperature 

behavior of output power of superluminescent 

light-emitting diode (SLED) by considering the 

effect of non-radiative recombination 

coefficient, non-radiative spontaneous emission 

coefficient and Auger recombination 

coefficients has been investigated. For this aim, 

GaN pyramidal quantum dots were used as the 

active region. The numerical method has been 

used to solve three-dimensional Schrodinger 

equations and traveling-wave equations. The 

spectral width of the gain spectrum in each case 

has been investigated. Eliminating the non-

radiative recombination, non-radiative 

spontaneous emission coefficient and Auger 

recombination coefficients increased the output 

power of SLED and in some cases reduced the 

negative effect of temperature increase on 

output power. 

KEYWORDS: Auger recombination, GaN, gain, 

non-radiative spontaneous emission, output 

power, pyramidal quantum dot, ridge bent 

waveguide, Superluminscent light emitting 

diode. 

I. INTRODUCTION 

The performance of light-emitting 

semiconductors such as light-emitting diodes 

(LEDs), laser diodes (LDs) is based on the 

forward current p-n junction diode. 

Superluminescent light-emitting diodes 

(SLEDs) are another type of light-emitting 

semiconductors which combine the 

characteristics of both, LEDs and LDs, have a 

broadband emission spectrum and high output 

power. These properties enable the device to 

be an excellent candidate for applications such 

as Optical Coherence Tomography Systems 

(OCT), optics devices testing, fiber-optic 

sensors, and speckle-free illumination [1]-[4]. 

Many types of research have been done on 

broadening the bandwidth of the emission 

spectrum of SLEDs, including multilayer QDs 

structures, Dot in wells (Dwell) structures, 

manipulated structures by Strain Reducing 

Layers (SRLs), annealing, or other processes. 

Using the post-growth annealing technique, 

hybrid structures, p-doping in addition to 

chirped QD multilayer the spectral width has 

been improved and reported many times [5]-

[6]. The special properties of SLEDs based on 

nitride components, such as a wide range of 

emission frequencies, high quantum 

efficiency, and higher luminescence, have 

given them special attention [7]. 

Temperature characteristics of SLDs based on 

InAs/GaAs QDs multilayers have been 

investigated by M. Rossetti et al. [8]. The 

improvement of the output power by 

application of p-doping in the active region of 

QD to increase the modal gain in the presence 

of temperature changes has been reported [9]. 

The temperature dependence of L-I 
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characteristics has been surveyed frequently 

[10]-[12]. 

In this research, the effect of temperature on 

the output power of SLED has been surveyed 

and the role of non-radiative recombination, 

spontaneous emission, and Auger 

recombination has been shown. The structure 

used for this purpose is a GaN-QD based 

SLED with bent ridge waveguide with a trench 

section as shown in Fig.1. 

 
 

 

 

 

 

 

QDs active layer in the middle of the waveguide layer 

Fig. 1. Schematic view of the bent-waveguide 

SLED structure. 

II. THEORETICAL MODEL AND 

GOVERNING EQUATIONS 

Eigen values (eigen states of energy) and eigen 

wave functions related to electrons and holes, 

in the active region, were obtained by solving 

the three-dimensional Schrodinger equation 

[13] and the effect of the pyramid shape of 

quantum dots was considered in Hamiltonian. 

The traveling-wave equation in the one-

Dimensional model can describe the 

propagation of optical waves along the cavity. 

By applying a theoretical model including a 

ridge waveguide structural model 

accompanied by QD energy states and 

position-dependent rate equations for the 

carrier density, this issue was solved through a 

numerical method [13]. 

The used traveling wave equation in the 

steady-state condition is simplified as follows 

[14]: 

± 
𝜕𝑃±(𝑧,𝑡,𝜆)

𝜕𝑧
= (Γ(𝜆)𝑔(𝑧, 𝑡, 𝜆) −

𝛼𝑖𝑛𝑡)𝑃±(𝑧, 𝑡, 𝜆) + 𝛾𝑅𝑠𝑝(𝑧, 𝑡, 𝜆)
ℎ𝑐𝜔𝑑

𝜆
 (1) 

where P+ and P− are the forward and 

backward traveling optical power, 

respectively. Γ is the optical mode 

confinement factor (the fraction of the 

propagating field mode confined to the active 

region), g is the material gain, αint is the 

optical loss in the cavity, Rsp is the spectral 

density of spontaneous emission, γ is the 

spontaneous emission coupling coefficient, λ 

is the wavelength, w and d are the active 

region cross-sectional width and thickness, 

respectively. The power equation in the 

steady-state condition is expressed as follow 

[14]: 

𝐼(𝑧)

𝑒𝑑𝐿𝑤
= [𝐴𝑁(𝑧, 𝑡) + 𝐵𝑁2(𝑧, 𝑡) + 𝐶𝑁3(𝑧, 𝑡)] 

                 + ∑
Γ𝑔(𝑧,𝑡,𝜆)[𝑃+(𝑧,𝑡,𝜆)+𝑃−(𝑧,𝑡,𝜆)]

ℎ𝜐𝑘𝑤𝑑
 (2) 

where I(z) is the bias current and dLW is the 

volume of the active region. The first term on 

the right-hand side of Eq. (2) is the 

recombination rate term, where ‘A’ denotes 

the non-radiative recombination coefficient, 

‘B’ the non-radiative spontaneous emission 

coefficient, and ‘C’ the Auger recombination 

coefficient and N is the carrier density. The 

second term on the right-hand side of the 

equation is the amplified spontaneous 

emission (ASE) term. 

The traveling-wave Eq. (1) and the carrier 

density rate Eq. (2) were solved numerically 

and simultaneously to obtain output power 

[13]. 

AlGaN 

 

GaN 
AlGaN 
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III. RESULTS AND DISCUSSION 

A. The Effect of Non-Radiative, 

Spontaneous Emission, and Auger 

Recombination Coefficient 

Processes that affect the output of a light-

emitting semiconductor are non-radiative 

recombination, non-radiative spontaneous 

emission, and Auger recombination (as seen in 

Eq. (2)). Non-radiative recombination causes a 

decrease in semiconductor output power, in 

the process of spontaneous emission. If one 

can protect exciton from their defects 

environment, using methods such as those 

shown in [15], then photo-excited electrons are 

kept in the core of QDs and cause to 

suppression of non-radiative recombination, 

Auger recombination, and non-radiative 

spontaneous emission. 

Here, we present the effect of eliminating non-

radiative recombination, Auger recombination, 

and the non-radiative spontaneous emission 

coefficient on the output power (Fig. 2.) 

 
Fig. 2. The output power as a function of bias 

current by changing the recombination coefficients 

(these data are in temperature of 300K). 

In Fig. 2. letter A represents the non-radiative 

recombination coefficient, letter B represents 

the non-radiative spontaneous emission 

coefficient and C denotes the Auger 

recombination coefficient. 

This diagram shows the effect of 

recombination terms on the output power. In 

other words, if we eliminate each of the non-

radiative recombination, the Auger 

recombination and the non-radiative 

spontaneous emission coefficient the output 

power increases. As can be seen from the 

diagram, elimination of the non-radiative 

spontaneous emission coefficient causes a 

significant increase in output power and so we 

can consider the non-radiative spontaneous 

emission a loss because it radiates in all 

directions, only a small part of it is coupled 

into the waveguide. On the other hand, the 

Auger recombination has little effect on the 

output power of SLED. 

B. The Effect of Temperature on the Output 

Power by Varying the Auger Recombination 

In SLEDs, the bandwidth of the gain spectrum 

is a key characteristic for evaluating its output 

power. Therefore, we first obtain the gain 

spectrum for conditions where the Auger 

coefficient does not exist and in normal 

conditions with the Auger coefficient. Figure 3 

clearly shows the changes in the gain spectrum 

width. 

 
Fig. 3. Modal gain spectrum in two conditions; 

considering the Auger coefficient and without it. 

According to the gain spectra, the full width at 

half maximum (FWHM) for these diagrams 

was calculated and shows that in the case 

without Auger recombination coefficient 

FWHM is equal to 23.7 nm, and greater than a 

normal condition with FWHM=15nm. Since 

more bandwidth is more desirable for the 

SLED, we expect to get more output power in 

these conditions. Confirmation of this result 

was shown in Fig. 2. 
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Figure 4. compares the output power 

characteristics of a 1200 μm long SLED 

versus temperature for the bias current of 400 

mA in two cases; a) the Auger recombination 

coefficient has its original value and, b) the 

Auger recombination coefficient is zero. 

 
Fig. 4. The output power as a function of bias 

current by changing the temperature and the Auger 

recombination coefficients 

It can be seen that increasing the temperature 

reduces the output power because at higher 

temperatures carriers are distributed over a 

wider range of energy and consequently the 

gain decreases. However, by controlling the 

Auger recombination this negative effect is 

greatly reduced. The diagram of the gain 

spectrum at two different temperatures for the 

SLED is shown in Fig. 5. 

 
Fig. 5. Modal gain spectrum in two different 

temperatures, 1200 μm long SLED and 400 mA 

bias current. 

C. The Effect of Non-Radiative 

Spontaneous Emission 

In this section, the effect of the elimination of 

the non-radiative spontaneous emission 

coefficient has been investigated. As in the 

previous section, the gain spectrum is shown 

in two situations. The value obtained for 

FWHM in these conditions is equal to 18 nm, 

which is also more than the normal condition 

(Fig. 6). 

 
Fig. 6. Modal gain spectrum in two conditions; 

considering the non-radiative spontaneous emission 

coefficient and without it. 

The output power concerning temperature 

changes for 400 (mA) bias current has been 

plotted in Fig. 7. 

 
Fig. 7. The output power of SLED for zero non-

radiative spontaneous emission coefficient and by 

varying the temperature at bias current 400 (mA). 

As can be seen from the diagram, the effect of 

eliminating the non-radiative spontaneous 

emission coefficient on the output power is 

such that it covers almost all the negative 
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effects of temperature increase and the output 

power results in almost the same at all three 

temperatures. 

IV. CONCLUSION 

In conclusion, the behavior of SLED based on 

nitride QDs was shown by changing the 

recombination coefficients and considering 

temperature changes. The results show that by 

limiting and controlling the Auger 

recombination coefficients and non-radiative 

spontaneous emission coefficients the output 

power can be increased, which is due to the 

increase in the gain spectrum width. So that 

the negative effect of temperature increase is 

partially eliminated. 
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