Volume 15, Issue 2 (Summer-Fall 2021)                   IJOP 2021, 15(2): 167-178 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Janfaza M, Moradi H, Maleki M. Investigation of 2D Materials Effect on Few-Mode Fiber Optical Temperature and Strain Sensors. IJOP. 2021; 15 (2) :167-178
URL: http://ijop.ir/article-1-459-en.html
1- Faculty of Engineering, Electrical Engineering Department, Jahrom University, Jahrom, Iran
2- Physics Department, Amirkabir University of Technology, Tehran, Iran
3- RF MEMS and Bio-Nano-Electronics Lab, Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
Abstract:   (1019 Views)
Graphene and molybdenum disulfide (MoS2), as two of the most attractive two-dimensional (2D) materials, are used to improve the temperature and strain sensing responses of the few-mode fibers (FMFs). The temperature and strain effects are detected based on distributed optical fiber sensors equations, where the Brillouin scattering (BS) is investigated for the FMF tapered region. For this purpose, the 2D materials were assumed as cover layers on the tapered FMF to enhance its sensitivity. Graphene and MoS2 are used as the cover layer on the FMF cladding at a distance of 10 μm from the core, and the impact of the number of material layers is investigated. By increasing the graphene layers, the temperature and strain sensitivities increase (3% and 16%, respectively) due to the rise of the inter-modal interference of the FMF. Moreover, the increasing of the MoS2 layer number improves the temperature sensitivity by 28% but shows a lower impact on strain sensitivity (about 13%). The advantage of MoS2 with respect to graphene originates from the imaginary part of the refractive index of graphene (assumed with chemical potential of 0.4 eV at the working wavelength of 1550 nm), which leads to a lower effective index of the tapered region, hence lower sensitivities. This sensitivity enhancement can improve the performance of the BS-based sensors for local detection of the parameters under-investigation in multi-parameter sensors.
Full-Text [PDF 709 kb]   (269 Downloads)    
Type of Study: Research | Subject: General
Received: 2021/06/13 | Revised: 2022/01/21 | Accepted: 2022/01/29 | Published: 2022/06/22

1. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. Vol. 9, pp. 57-79, 2003. [DOI:10.1016/S1068-5200(02)00527-8]
2. G. Rajan, Optical fiber sensors: advanced techniques and applications, CRC press, 2017. [DOI:10.1201/b18074]
3. P. Orr and P. Niewczas, "High-speed, solid state, interferometric interrogator and multiplexer for fiber Bragg grating sensors," J. Lightwave Technol. Vol. 29, pp. 3387-3392, 2011. [DOI:10.1109/JLT.2011.2169044]
4. S.-C. Her and C.-M. Yang, "Dynamic strain measured by Mach-Zehnder interferometric optical fiber sensors," Sensors, Vol. 12, pp. 3314-3326, 2012. [DOI:10.3390/s120303314] [PMID] [PMCID]
5. X. Li, Y. Shao, Y. Yu, Y. Zhang, and S. Wei, "A highly sensitive fiber-optic Fabry-Perot interferometer based on internal reflection mirrors for refractive index measurement," Sensors, vol. 16, pp. 794 (1-12), 2016. [DOI:10.3390/s16060794] [PMID] [PMCID]
6. H. Moradi, P. Parvin, F. Shahi, and A. Ojaghloo, "Fiber optic Fabry-Pérot acoustic sensor using PVC and GO diaphragms," OSA Continuum, Vol. 3, pp. 943-951, 2020. [DOI:10.1364/OSAC.391342]
7. X. Bao and L. Chen, "Recent progress in Brillouin scattering based fiber sensors," Sensors, Vol. 11, pp. 4152-4187, 2011. [DOI:10.3390/s110404152] [PMID] [PMCID]
8. P. Lu, N. Lalam, M. Badar, B. Liu, B.T. Chorpening, M.P. Buric, and P.R. Ohodnicki, "Distributed optical fiber sensing: Review and perspective," Appl. Phys. Rev. Vol. 6, pp. 041302 (1-35), 2019. [DOI:10.1063/1.5113955]
9. L. Palmieri and L. Schenato, "Distributed optical fiber sensing based on Rayleigh scattering," The Open Opt. J. Vol. 7, pp. 104-127, 2013. [DOI:10.2174/1874328501307010104]
10. T. Feng, J. Zhou, Y. Shang, X. Chen, and X.S. Yao, "Distributed transverse-force sensing along a single-mode fiber using polarization-analyzing OFDR," Opt. Express, Vol. 28, pp. 31253-31271, 2020. [DOI:10.1364/OE.405682] [PMID]
11. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, "High-birefringence fiber loop mirrors and their applications as sensors," Appl. Opt. Vol. 44, pp. 2382-2390, 2005. [DOI:10.1364/AO.44.002382] [PMID]
12. J. Villatoro, V. Finazzi, V.P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. Vol. 91, pp. 091109 (1-3), 2007. [DOI:10.1063/1.2775326]
13. X. Dong, H. Tam, and P. Shum, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer," Appl. Phys. Lett. Vol. 90, pp. 151113 (1-3), 2007. [DOI:10.1063/1.2722058]
14. R.W. Tkach, "Scaling optical communications for the next decade and beyond," Bell Labs Technical J. Vol. 14, pp. 3-9, 2010. [DOI:10.1002/bltj.20400]
15. K.-i. Kitayama and N.-P. Diamantopoulos, "Few-mode optical fibers: Original motivation and recent progress," IEEE Commun. Mag. Vol. 55, pp. 163-169, 2017. [DOI:10.1109/MCOM.2017.1600876]
16. S. Randel, R. Ryf, A. Sierra, P.J. Winzer, A.H. Gnauck, C.A. Bolle, R.-J. Essiambre, D.W. Peckham, A. McCurdy, and R. Lingle, "6× 56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6× 6 MIMO equalization," Opt. Express, Vol. 19, pp. 16697-16707, 2011. [DOI:10.1364/OE.19.016697] [PMID]
17. A.H. Hartog, An introduction to distributed optical fibre sensors, CRC press, 2017. [DOI:10.1201/9781315119014]
18. A. Li, Y. Wang, Q. Hu, and W. Shieh, "Few-mode fiber based optical sensors," Opt. Express, Vol. 23, pp. 1139-1150, 2015. [DOI:10.1364/OE.23.001139] [PMID]
19. Y. Weng, E. Ip, Z. Pan, and T. Wang, "Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers," Opt. Express, Vol. 23, pp. 9024-9039, 2015. [DOI:10.1364/OE.23.009024] [PMID]
20. H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, and W. Tong, "Few-mode optical fiber based simultaneously distributed curvature and temperature sensing," Opt. Express, Vol. 25, pp. 12722-12732, 2017. [DOI:10.1364/OE.25.012722] [PMID]
21. F. Bahrami, J.S. Aitchison, and M. Mojahedi, "Multimode Spectroscopy in Optical Biosensors," Biomed. Opt. Sensors, pp. 57-79, 2020. [DOI:10.1007/978-3-030-48387-6_3]
22. M. Maleki, M. Mehran, and A. Mokhtari, "Design of a near-infrared plasmonic gas sensor based on graphene nanogratings," J. Opt. Soc. Am. B, Vol. 37, pp. 3478-3486, 2020. [DOI:10.1364/JOSAB.401589]
23. D. Wu, M. Wang, H. Feng, Z. Xu, Y. Liu, F. Xia, K. Zhang, W. Kong, L. Dong, and M. Yun, "Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene," Carbon, Vol. 155, pp. 618-623, 2019. [DOI:10.1016/j.carbon.2019.09.024]
24. M. Janfaza, M.A. Mansouri-Birjandi, and A. Tavousi, "Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on bragg gratings," Opt. Commun. Vol. 440, pp. 75-82, 2019. [DOI:10.1016/j.optcom.2019.01.062]
25. M. Janfaza, M.A. Mansouri-Birjandi, and A. Tavousi, "Tunable plasmonic band-pass filter based on Fabry-Perot graphene nanoribbons," Appl. Phys. B, Vol. 123, pp. 262 (1-9), 2017. [DOI:10.1007/s00340-017-6838-0]
26. Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, "Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator," Sensors, Vol. 18, pp. 116 (1-14), 2018. [DOI:10.3390/s18010116] [PMID] [PMCID]
27. F. Sun, L. Xia, C. Nie, C. Qiu, L. Tang, J. Shen, T. Sun, L. Yu, P. Wu, S. Yin, S. Yan, and C. Du "An all-optical modulator based on a graphene-plasmonic slot waveguide at 1550 nm," Appl. Phys. Express, Vol. 12, pp. 042009 (1-10), 2019. [DOI:10.7567/1882-0786/ab0a89]
28. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnol. Vol. 7, pp. 699-712, 2012. [DOI:10.1038/nnano.2012.193] [PMID]
29. M. Bernardi, M. Palummo, and J.C. Grossman, "Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials," Nano Lett. Vol. 13, pp. 3664-3670, 2013. [DOI:10.1021/nl401544y] [PMID]
30. D.J. Late, B. Liu, H.R. Matte, V.P. Dravid, and C. Rao, "Hysteresis in single-layer MoS¬ field effect transistors," ACS Nano, Vol. 6, pp. 5635-5641, 2012. [DOI:10.1021/nn301572c] [PMID]
31. Z. Ashkavand, E. Sadeghi, R. Parvizi, and M. Zare, "Developed Low-Temperature Anionic 2H-MoS2/Au Sensing Layer Coated Optical Fiber Gas Sensor," ACS Appl. Mater. Interfaces, Vol. 12, pp. 34283-34296, 2020. [DOI:10.1021/acsami.0c05108] [PMID]
32. X. Bao and L. Chen, "Recent progress in distributed fiber optic sensors," Sensors, Vol. 12, pp. 8601-8639, 2012. [DOI:10.3390/s120708601] [PMID] [PMCID]
33. K.Y. Song, Y.H. Kim, and B.Y. Kim, "Intermodal stimulated Brillouin scattering in two-mode fibers," Opt. Lett. Vol. 38, pp. 1805-1807, 2013. [DOI:10.1364/OL.38.001805] [PMID]
34. G.P. Agrawal, Nonlinear fiber optics, Nonlinear Science at the Dawn of the 21st Century, Springer, pp. 195-211, 2000. [DOI:10.1007/3-540-46629-0_9]
35. S.F. Mafang, "Brillouin echoes for advanced distributed sensing in optical fibres," École Polytechnique Fédérale De Lausanne, doctoral thesis, 2011.
36. J.M. Coelho, M. Nespereira, M. Abreu, and J. Rebordão, "3D finite element model for writing long-period fiber gratings by CO2 laser radiation," Sensors, Vol. 13, pp. 10333-10347, 2013. [DOI:10.3390/s130810333] [PMID] [PMCID]
37. R. Khazaeinezhad, SH. Kassani,T. Nazari, H. Jeong, J. Kim, K. Choi, J.U. Lee, J.H. Kim, H. Cheong, D.I. Yeom, and K. Oh, "Saturable optical absorption in MoS2 nano-sheet optically deposited on the optical fiber facet," Opt. Commun. Vol. 335, pp. 224-230, 2015. [DOI:10.1016/j.optcom.2014.09.038]
38. A. Petcu-Colan, M. Frawley, and S.N. Chormaic, "Tapered few-mode fibers: mode evolution during fabrication and adiabaticity," Journal of Nonlinear Optical Physics & Materials, Vol. 20, pp. 293-307, 2011. [DOI:10.1142/S0218863511006170]
39. M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, and A.Z. Moshfegh, "Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives," Nanoscale Horiz. Vol. 3, pp. 90-204, 2018. [DOI:10.1039/C7NH00137A] [PMID]
40. H.Z. Yang, M.M. Ali, M.R. Islam, K.-S. Lim, D.S. Gunawardena, and H. Ahmad, "Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement," Sensors and Actuators A: Physical, Vol. 228, pp. 62-68, 2015. [DOI:10.1016/j.sna.2015.03.001]
41. S. Sridhar, S. Sebastian, A.K. Sood, and S. Asokan, "A Study on MoS₂ Nanolayer Coated Etched Fiber Bragg Grating Strain Sensor," IEEE Sensors J. Vol. 21, pp. 9171-9178, 2021. [DOI:10.1109/JSEN.2021.3054473]
42. C. Li, X. Peng, C. Wang, S. Cao, and H. Zhang, "Few-layer MOS2-deposited flexible side-polished fiber Bragg grating bending sensor for pulse detection," IEEE 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 2007-2010, 2017. [DOI:10.1109/TRANSDUCERS.2017.7994465]
43. N. Ansari and F. Ghorbani, "Light absorption optimization in two-dimensional transition metal dichalcogenide van der Waals heterostructures," J. Opt. Soc. Am. B, Vol. 35, pp. 1179-1185, 2018. [DOI:10.1364/JOSAB.35.001179]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb