Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 49-54 | Back to browse issues page

XML Print

Department of Physics, Imam Khomeini International University, Qazvin, Iran.
Abstract:   (957 Views)
In this work, we investigate a time-dependent dissipative scalar field. Inspired by the Bateman lagrangian, we showed a procedure for quantizatizing the massive scalar field with the time-dependent dissipative term. So, the properties of a quantum dissipative scalar field are analyzed by the Caldirola-Kanai model. Also, we construct the Hilbert space for the system and calculate the wave eigen-functions and probability distribution of the system.
Full-Text [PDF 146 kb]   (382 Downloads)    
Type of Study: Research | Subject: General
Received: 2021/01/3 | Revised: 2021/08/8 | Accepted: 2021/08/21 | Published: 2021/12/30

1. W. Paul, "Electromagnetic traps for charged and neutral particles," Rev. Mod. Phys. Vol. 62, pp. 531-540, 1990. [DOI:10.1103/RevModPhys.62.531]
2. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, "Quantum dynamics of single trapped ions," Rev. Mod. Phys. Vol. 75, pp. 281-324, 2003. [DOI:10.1103/RevModPhys.75.281]
3. E. Torrontegui, X. Chen, A. Ruschhaupt, and J. G. Muga, "Lewis-Riesenfeld invariants and transitionless quantum driving‌," Phys. Rev. A, Vol. 83, pp. 062116 (1-8), 2011. [DOI:10.1103/PhysRevA.83.062116]
4. H. Johnston and S. Sarkar, "A re-examination of the quantum theory of optical cavities with moving mirrors,"‌ J. Phys. A, Vol. 29, pp. 1741-1746, 1996. [DOI:10.1088/0305-4470/29/8/020]
5. M.S. Sarandy, E.I. Duzzioni, and R.M. Serra, "Quantum computation in continuous time using dynamic invariants,"‌ Phys. Lett. A, Vol. 375, pp. 3343 (1-7), 2011. [DOI:10.1016/j.physleta.2011.07.041]
6. U. Gungordu, Y. Wan, M.A. Fasihi, and M. Nakahara, "Dynamical invariants for quantum control of four-level systems,"‌ Phys. Rev. A, Vol. 86, pp. 062312 (1-9), 2012. [DOI:10.1103/PhysRevA.86.062312]
7. M.C. Bertin, J.R.B. Peleteiro, and B.M. Pimentel, "Dynamical Invariants and Quantization of the One-Dimensional Time-Dependent, Damped, and Driven Harmonic Oscillator," Braz J Phys. Vol. 50, pp.534-540, 2020. [DOI:10.1007/s13538-020-00765-8]
8. L. Astrakhantsev and D. Oleksandr, "Massive scalar field theory in the presence of moving mirrors," Mod. Phys. Lett. A, Vol. 33, pp. 1850126 (1-24), 2018. [DOI:10.1142/S0217751X18501269]
9. L.H. Yu and C.P. Chang, "Evolution of the wave function in a dissipative system," Phys. Rev. A, Vol. 49, pp. 592-595, 1994.‌ [DOI:10.1103/PhysRevA.49.592] [PMID]
10. L.H. Yu and C.P. Sun, "Quantum tunneling in a dissipative system,"‌ Phys. Rev. A, Vol. 54, pp. 3779 (1-13), 1996. [DOI:10.1103/PhysRevA.54.3779] [PMID]
11. H. Dekker, "classical and quantum mechanics of the damped harmonic oscillator,"‌ Phys. Rep, Vol.80, pp.1-110, 1981. [DOI:10.1016/0370-1573(81)90033-8]
12. C.I. Um, K.H. Yeon, and T.F. George, "The quantum damped harmonic oscillator,"‌ Phys. Rep. Vol. 362, pp. 63-192, 2002. [DOI:10.1016/S0370-1573(01)00077-1]
13. H. Bateman, "on dissipative systems and related variational principles,"‌ Phys. Rev. Vol. 38, pp. 815-819, 1931. [DOI:10.1103/PhysRev.38.815]
14. M.C. Huang and M.C. Wu, "The Caldirola-Kanai model and its equivalent theories for a damped oscillator," Chin. J. Phys. Vol. 36, pp. 566-587, 1998.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.