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ABSTRACT— In this work, we investigate a time-

dependent dissipative scalar field. Inspired by 

the Bateman lagrangian, we showed a procedure 

for quantizatizing the massive scalar field with 

the time-dependent dissipative term. So, the 

properties of a quantum dissipative scalar field 

are analyzed by the Caldirola-Kanai model. 

Also, we construct the Hilbert space for the 

system and calculate the wave eigen-functions 

and probability distribution of the system. 

KEYWORDS: Bateman Lagrangian, Caldirola-

Kanai model, Dissipative system, Massive 

scalar field. 

I. INTRODUCTION 

In the last decades many techniques have been 

developed to describe the dissipative system in 

to the framework of quantum mechanics. Many 

interesting physical phenomena arise when 

quantum systems are subjected to the influence 

of external time-dependent conditions. Time-

dependent systems appear in several 

applications in physics such as ion traps [1], [2], 

[3], optical cavities [4], and to perform 

algorithms in quantum computation [5], [6]. 

A scalar field is a subject that playing an 

important role in classical and quantum 

mechanics. The scalar fields appear in various 

branches of physics. A dissipative scalar field 

with time-dependent damping factors can be 

used in describing time-dependent dissipative 

systems. Most of the physical systems are 

damping systems [7], [8].  

There are many approaches to take into account 

dissipation in quantum theory, for example the 

phenomenological [9] and canonical approach 

[10]. In these approaches, the interaction 

between the system and its environment is 

defined such that irreversible energy flows from 

the system to its environment results. 

The main obstacle in quantizing a dissipative 

field is that a Lagrangian or a Hamiltonian is 

required generate the system's quantum 

evolution and the quantum evolution of the 

system. This leads to difficulties in 

implementing the canonical commutation 

relations if we cannot include a heath bath [11], 

[12]. Various approaches to quantize a 

dissipative system have been introduced. 

In this work, we showed a procedure for 

quantizing the massive scalar field with time-

dependent dissipative terms. In the canonical 

approach, which we follow here, the whole 

system is described by a total Lagrangian. 

Inspired by the Bateman Lagrangian [13], a 

time-dependent Lagrangian is proposed for a 

dissipative massive scalar field. 

We also construct the Hilbert space of the 

system and calculate the wave eigen-functions. 

The wave functions ψn are time-dependent and 

lead, in the general case, to time-dependent 

expectation values and uncertainty relations for 

the canonical operators. The properties of a 

quantum dissipative scalar field are analyzed by 

the Caldirola-Kanai model [14]. The time-

dependent creation and annihilation operators 

are proposed. 

II. MASSIVE SCALAR FIELD 

In the present article, inspired by the Bateman 

lagrangian, we present a time-dependent 
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lagrangian for a dissipative massive scalar field 

as follows 

 
.

2 2 2 ( )1
( , ( , ))

2

t

tL x t m x t e    , (1) 

From Euler-Lagrange equations, we find the 

classical equation of motion for the field as 

2 2( , ) ( ) ( , ) ( , ) 0t x t t x t m x t      ɺ , (2) 

Which describes the dissipative massive scalar 

field. Using the transformation 

( )/2( , ) ( , ) tx t x t e  , (3) 

The Lagrangian is then transformed as 

2
2 21

( ( , ) ( ) ( , )) ( , )
2 2

t

m
L x t t x t x t      ɺ  (4) 

In this step, we want to quantize the model via 

a canonical quantization approach and find 

similar coupled differential equations for the 

quantum fields which we are interested in. 

From the Lagrangian density, the conjugate 

momentum corresponding to the field is defined 

by 

ˆ ˆˆ ( , ) ( , ) ( ) ( , )
ˆ( )

t

t

L
x t x t t x t   




    
 

ɺ , (5) 

The equal-time quantization rule is 

ˆ ˆ[ ( , ), ( ', )] ( ')x t x t i x x   ℏ , (6) 

Having the Lagrangian and conjugate 

momentum, we can find the corresponding 

Hamiltonian as 

2
2 2 21 1 ( )ˆ ˆˆ ( , ) ( , )

2 2 4

1
ˆ ˆ( ) ( , ) ( , )

2

t
H x t m x t

t x t x t






 

  

 
   

 



ɺ

ɺ

, (7) 

Where  

2
2 ( )

4

t
m


  

ɺ
. 

In Heisenberg picture, one finds the equations 

of motion as operator analogs of classical 

equations of motion 

1
ˆ ˆ ˆˆ( , ) [ , ] ( , ) ( ) ( , ),

2
t

i
x t H x t t x t        ɺ

ℏ

 (8) 

and 

2

ˆ ˆ( , ) [ , ]

1
ˆ ˆ( , ) ( ) ( , ),

2

t

i
x t H

x t t x t

 



 

  

  

 

ℏ

ɺ

, (9) 

By substituting Eq. (9) in (8), obtained 

2 2 1
ˆ ˆ( , ) ( ) ( , ) 0

2
t x t m t x t       

 
ɺɺ , (10) 

that 

2 1
( )

2
m t   ɺɺ  

Now we can introduce the pairs of the creation 

and annihilation operators as follows 

†

ˆ ˆ ˆ( ( , ) ( , )),
2

ˆ ˆ ˆ( ( , ) ( , )),
2

i
b x t x t

i
b x t x t


 




 



 

 

ℏ

ℏ

, (11) 

The time-dependent creation and annihilation 

operators are proposed here and it can be shown 

that the creation and annihilation operators 

satisfy the usual commutation relations and the 

Hamiltonian can be written in terms of these 

operators. 

The problem is then reduced to the standard 

quantum free massive scalar field and the 

frequency of energy Eigen-value is given by    

† 1ˆ ˆˆ
2

H b b    
 

ℏ , (22) 
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III. EXAMPLES 

We consider a particular case that the frictional 

coefficient of the system decreases rationally. 

0
0( ) , 0, 0

1
t q

qt


   


, (13) 

The frequency of this frictional coefficient is 

2
2 0

3(1 )

q
m

qt


  


, (14) 

Another example is the case that the frictional 

coefficient of the system increase linearly 

0( )t t  , (35) 

The equation of the motion is converted to this 

form 

2
2 0( , ) ( , ) 0

4
x t m x t


 

 
   
 

ɺɺ , (46) 

So, the canonical momentum of the system is 

ˆˆ ( , ) ( , )x t x t  ɺ , (57) 

And the Hamiltonian of the system became 

2 2 2

0

1 1ˆ ˆˆ ( , ) ( , )
2 2

1
ˆ ˆ( , ) ( , )

2

H x t m x t

x t x t





 

  

 


, (68) 

The annihilation and creation operators are 

0

0

† 0

0

ˆˆ ˆ( ( , ) ( , ))
2

ˆˆ ˆ( ( , ) ( , ))
2

i
a x t x t

i
a x t x t






 




 



 

 

ℏ

ℏ

, (79) 

And the Hamiltonian of the system in terms of 

the ladder operators is obtained 

†

0

1ˆ ˆ ˆ
2

H a a    
 

ℏ , (20) 

To obtain the wave function of the field in a 

position basis, we have 

0 0
ˆ ( , ) ( )x x t x   , (21) 

The ground- state wave function is given by 

20

1

4
0 2

0 ( )
x

x e





   
 

ℏ

ℏ
, (22) 

For any state n, the wave function are expressed 

in terms of the Hermite polynomial as follows 

20
1/4

0 02

ˆ ( , ) ( )

( 1)
( )

!

n n

n
x

x x t x

e H x
n



  

 






    
 

ℏ

ℏ ℏ

, (23) 

The loss energy wave function of the scalar 

field is obtained 

20 0

0 0

1/4

0 02

ˆ( , ) ( )

( 1)

!

t

n n

n
x e

t i nt

x x t x

e H xe e
n


 

  

 


 



           
ℏ

ℏ ℏ

 (24) 

In this paper we have obtained the exact eigen-

states of a dissipative scalar field. 

IV. THE SEMI-CALDIROLA- KHANAI 

HAMILTONIAN 

In this section, inspired by the Caldirola-Khanai 

Hamiltonian, we introduced a Hamiltonian for 

the scalar field. Next, by introducing a new 

canonical transformation, we quantized the 

dissipative scalar field. Define the canonical 

transformation 

/2

/2

ˆˆ ( , ) ( , )

ˆ ˆ( , ) ( , )

t

t

x t x t e

x t x t e




 

 

 




, (25) 

The Hamiltonian equation for the scalar field, 

using the above canonical transformation, 

became 

2 2 21 1 ˆˆ ˆ ( , ) ( , )
2 2

t t

ckH x t e x t e 
     , (26) 
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The following equal-time commutation relation 

is imposed on the field and their conjugate 

momentum 

ˆ ˆ[ ( , ), ( ', )]

ˆ ˆ[ ( , ), ( ', )] ( ')

x t x t

x t x t i x x





 

  



 ℏ
, (27) 

The creation and annihilation operators for 

these Hamiltonian are defined as follows 

/2 /2

† /2 /2

ˆ ( , )
ˆ ˆ( , ) ,

2

ˆ ( , )
ˆ ˆ( , ) ,

2

t t

t t

x t
A x t e i e

x t
A x t e i e

 

 











 
   

 
   

ℏ

ℏ

 (28) 

where 

†ˆ ˆ[ , ] 1A A  , (29) 

So the Hamiltonian becomes 

† 1ˆ ˆˆ
2

ckH A A
    
 

ℏ , (30) 

The Hamiltonian of the dissipative massive 

scalar field is reduced to the diagonal 

Hamiltonian with time-dependent creation and 

annihilation operators. 

The coherent states of the system are as follows  

Â     , (31) 

which 

2 /2

0 exp t tN e x e x 
      

 ℏ
, (32) 

The probability distribution for the dissipative 

system is 

*

*

( ) ( ) ( )

( ) ( )

P t d

d

    

    
















, (33) 

Therefore, the probability density is conserved 

in both Hilbert spaces. 

V. CONCLUSION 

In this paper, we consider the dissipative scalar 

field with time dependent frictional coefficient.  

We present a time dependent lagrangian similar 

to Bateman lagrangian for the dissipative 

massive scalar field. The properties of a 

quantum dissipative scalar field are analyzed by 

Semi-Caldirola-Kanai model. It is shown the 

probability density is conserved in both Hilbert 

spaces. 
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