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ABSTRACT— An approximate numerical
method is proposed and discussed for solving
the evolution of the spin density operator when
the quantum system has an interaction with an
external electromagnetic field. In this method
by separating the relaxation and field
interaction processes at small steps, instead of
solving the conventional Liouville-von Neumann
or Bloch differential equations, the time
evolution of the density operator is efficiently
obtained by a two-stage numerical algorithm.
Here we have compared the results of this
approach with Bloch equation results for a two-
level quantum system. The proposed approach
has potential applications in calculation of the
time evolution for different atomic system
including nuclear or electron spin resonance
systems.

KeEywoRDs: Bloch equation, Liouville-von
Neumann equation, Two level quantum
systems, Spin density operator dynamics.

|.INTRODUCTION

The time evolution of the populations and
coherencies between different atomic levels is
an essential issue in atomic physics and
different light-matter interaction processes [1],
[2]. In this regard, density operator
representation of an ensemble of atoms is a
general approach in describing the atomic
quantum system. Using the density operator
has different advantages, which include the
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physical interpretation of its matrix elements
that lead to the  possibility  of
phenomenological inclusion of various
physical effects into the equation of motion
[1]. Some of these effects which can be
considered as relaxation terms of appropriate
matrix elements include decay to unobserved
levels, spontaneous decay between levels,
quenching collisions of active levels,
incoherent pumping, etc [1]. It should be noted
that the density operators for a closed system
should satisfy the following requirements
throughout the whole evolution [3]: (a)
Hermitian, so that all the probabilities are real,
(b) trace—preserving, because the sum of the
probabilities over any complete set must be
one, (c) positive, otherwise some probabilities
might be negative. Different methods such as
Liouville-von Neumann equation have been
developed for the solution of the spin density
operators [2-7]. In the special case of two-level
systems, the time evolution of the density
matrix elements can be described by the
classical Bloch equation [8]. The Bloch
equation was developed in 1946 to describe
the motion of the expectation value of the
system magnetization under the influence of
control fields and longitudinal and transverse
relaxations.

In this work, a novel numerical approach for
the calculation of the density matrix time
evolution in a multi-level system is presented
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and its results for a two-level system is
compared with the conventional Bloch
equation solution.

Il. THEORETICAL MODEL
Here, we describe our computational method
with notations of a two-level system in which
the results can be compared with conventional
Bloch solution. The density operator of a two-
level ensemble is given in equation (1).
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where p, and p, stand for the population of

the states, while p, and p_ describe the
coherency between them. The spin density
operator can be also given by using a
magnetization vector as equation (2).
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where M (M=M.e;+M e +M.e;) is the

system magnetization vector. The three
components of the magnetization vector M,
My, and M, are related to the four density
operator matrix elements as given in equation

(3) [9].
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where B is the external magnetic field, » is
the gyromagnetic ratio and T is the system
temperature. It should be noted that the
longitudinal component M, is proportional to
the population difference between the two
states and the transverse components M, and

My are related to the coherences between the
states [9]. For such a two-level system, the
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Bloch equation which gives a general
framework for treating the simultaneous
effects of relaxation, electromagnetic fields,
and resonance offset, describe the components
of the magnetization vector as equation (4) [9].
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where ©° is the frequency detuning, @y 1S
the nutation frequency of the electromagnetic
(RF) field, ¢ is the phase of the RF field, and
Ty, and T, are the spin-lattice and spin-spin
relaxation times, respectively. Our method for
the calculation of the density operator
evolution is based on the fact that in the
presence of the electromagnetic field when the
relaxation is ignored, the density operator can
be found by applying the appropriate field
propagator. This is while, when there is no
electromagnetic field, the matrix elements of
the density operator would be relaxed to their
equilibrium values. In this regard, we divide
the interaction time to small steps and, in each
step, we separately apply the two mentioned
evolution mechanisms. For example, if we

assume the time steps as t,t,,t,,...,t,, during
each t., we apply the electromagnetic wave to

the ensemble (rotation period) and then during
the same time we let the system to be relaxed
(relaxation period). This sequence continues to
the end of the interaction time. During the
rotation period when we apply the
electromagnetic field, the Hamiltonian of the
interaction in the rotating frame may be
written as equation (5).

|:| ZQsz +a)nut(fx COS(¢P)+ IAV Sin(([)p)) (5)

It can be shown that this Hamiltonian can be
written as equation (6).

H= Wt F,iz (2,) F’éy (6,) IAz I:Azy (-6,) F’éz (-¢,)  (6)
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Where F§j is the propagator of the operator fj
which is defined as ﬁj(ﬂp):exp{—iﬂpfj}.

The effective rotation  frequency is

1
oy ={(0,)" +(Q°)*}2, and 6, is the tilt of
the rotation axis away from the z-axis and is
given by 0, =arctan(w,,/Q°). The

corresponding propagator for the Hamiltonian
of the equation (6) can be given as equation

(7).
Ret(3,) =R, (@,)R, (6,)R, (B)R,(=0,)R, (~¢,) (7)

where g is the flip angle and equals to
B, =w,t. Using this propagator which is

written as a product of five rotations about
orthogonal axes, the evolution of the density
operator can be obtained by sandwiching of

the density operators between Iimt(ﬂp) and

lim(—ﬁp). During the relaxation period, we

assume that the quantum system relaxes to its
thermal equilibrium. Based on quantum
statistical mechanics, in thermal equilibrium at
temperature T, the coherences between the
states are all zero and the populations obey the
Boltzmann distribution. For an isolated spin-
1/2 ensemble the thermal equilibrium density
operator is therefore given by equation (8).
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In the relaxation period, the density matrix
elements change as equations (9).
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where T, and T, are the longitudinal and

transverse relaxation time constants. It should
be noted that for simplicity we have

considered T,=2T and y=T,* in our
calculations.

111.RESULT AND DISCISSION

We have compared the calculation of the
magnetization evolution using the
conventional Bloch equations and the
proposed approach for different initial
magnetization and  system  parameters
including  frequency detuning, nutation
frequency and relaxation rate.

Figure 1 shows the comparison results for the
time evolution of different magnetization
components with a typical group of parameters
in a time interval with a flip angle of 10x. In
this calculations, the initial magnetization is
[Myo, Myo, Mpo]=[1, 0, 1], the relaxation rate is
7/=1><105(S’1), the frequency detuning is

Q° =1x10°(Hz) and the nutation frequency is
considered as «,, =1x10°(Hz). Figures 1(a),

nut
(b) show the Bloch and the proposed approach
with 500 steps solutions, respectively. For
better comparison, fig. 1(c) simultaneously
show the results of the two methods, while the
number of steps is decreased to 200 to
emphasis the differences. It should be noted
that as expected, the M, and My has

exponentially decreasing oscillations while the
My which is the magnetization component
parallel to the direction of the applied field has
a decaying behavior. Figure 2 shows the
comparison of the Bloch solution and the
proposed approach for obtaining the M,
component of the magnetization at various
relaxation rates. In these calculations, the
initial magnetization is considered as [Myo,
Myo, Mypl=[0, 0, 1], the detuning is
Q°=1x10°(Hz), the nutation frequency is

@ =1x10°(Hz), and the number of steps is
equal to 200.
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Fig. 1. The evolution of different magnetization

components. The initial magnetization is [Myo, Myq,

Mo]=[1, 0, 1], y=1x10°(s?), Q°=1x10°(Hz),

@, =1x10°(Hz), calculated by (a) the proposed

approach with 500 steps, (b) the Bloch solution, (c)
the both results (with 200 steps).

o
W b

It is clear that both approaches have the same
results. This is while in our approach, because
of the low number of steps, there are added
fluctuations. The effect of the number of steps
on the calculation results is investigated in fig.
3. This figure shows the calculation of the
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magnetization evolution using the proposed
approach with different step numbers. In these
calculations, the considered system parameters
are the same values used in the previous figure

with y =1x10°(s™).
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Fig. 2. The calculation results of the magnetization

evolution. When the initial magnetization is [Myo,

My01 MZO]=[O7 01 1]1 QO =1X103 (HZ)1

w,, =1x10°(Hz), calculated by (a) the proposed

approach, (b) the Bloch solution.

It is obvious that by increasing the step
numbers, the results of the proposed approach
become more similar to the result of the Bloch
equations. This is because increasing the step
numbers is equivalent to decreasing the
periods of free rotation and free relaxation
which make the calculation more accurate. It
should be noted that in the proposed method,
the order of the two parts of the calculation has
a small effect on the results.
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Fig. 3. The calculation results of the magnetization
evolution when the initial magnetization is [Mq,

Myo, Moo]=[0, 0, 1],  =1x10°(s7), ©° =1x10°(Hz),
@, =1x10°(Hz), with different step numbers (a)

500 steps, (b) 1000 steps, (c) 5000 steps, (d) The
conventional Bloch solution

Figure 4 shows the solution of the same
problem with a different order for applying of
the relaxation and rotation processes. In this
figure, the calculation is done with small
number of steps (100 steps) for a clear
presentation of the difference. It is evident that
solving the problem with both orders and
averaging on their result obviously improve
the calculation accuracy.
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Fig. 4. The evolution of different magnetization

components. When the initial magnetization is [Myo,

Myo, Moo]=[1, 0, 1],  =1x10°(s), ©° =1x10° (Hz),
@, =1x10°(Hz), step numbers = 100. The blue

line: first rotation and then relaxation, The red line:
first rotation and then relaxation.

The results of the proposed algorithm for the
spin dynamics solution is matched with the
Bloch solution for a wide range of system
parameters. For investigation of the matching
characteristic between the two approaches, we
have changed the system parameters and
obtained the difference between the two
solutions. Figure 5 shows the error percentage
between the results of the steady state value of
the proposed method and Bloch solution for
different relaxation rates and nutation
frequencies. Different parts of this figure (a-d),
show the error result for different frequency
detuning.
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Although the error percentage is small for a
wide range of parameters, it is evident that by
increasing the detuning, the error also
increases. This is while for different detuning,
the error is a maximum at low relaxation rates.

(@

0

“nut (Hz) v (Hz)

Fig. 5. The calculated error between the results of
proposed approach and the Bloch solution for the
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initial magnetization of [M,o, Myo, M,]=[0, 0, 1],
and at different @,, and p. The considered
Q° =1x10*(Hz),  (b)
Q° =1x10*(Hz),  (d)

detuning is @)
Q" =1x10°(Hz),  (¢)
Q° =1x10°(Hz).

The reason for this behavior is that at low
relaxation rates, the steady state solution
would be obtained in large flip angles (times).
This is while we have considered a finite time
interval for acquiring the steady state values. It
should be also noted that the solution time of
this method is remarkably short even for very
small steps. This is because the calculation
process includes matrix multiplication and
obtaining of the exponentially changing
variables. We believe that this method could
be wuseful for efficient and approximate
solutions of different complex atomic systems.

I\V.CONCLUSION

Here, we have presented an approximate
method to calculating spin  dynamic
evolutions. In this method, the time evolution
of the spin density operator is calculated by
dividing the total time interval into very small
steps. In each step, two successive processes
are considered. First ignoring the relaxation,
the time evolution of the density operator in
the presence of external field is obtained and
then ignoring the effect of external field, the
relaxation of the populations and the
coherences of the density operator is
calculated. For a two-level system, we have
compared the results of this approach with the
solution of the classical Bloch equation. It is
shown that considering small enough steps in
our approach, a very good agreement can be
achieved between these two methods. The
presented approach is obviously not limited to
the two-level systems but can be used for
multi-level and more complex systems.
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