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ABSTRACT— In this paper, we have 

proposed and demonstrated a new method 

of atomic population transfer. The 

transition dynamic of a two-level system is 

studied in a full quantum description of the 

Jaynes-Cummings model. Solving the time-

dependent Schrödinger equation, we have 

investigated the transition probabilities 

numerically and analytically by using a 

sudden boost of the laser frequency. The 

results show that complete population 

transfer can be achieved by adjusting the 

time of the frequency boost. 
 

KEYWORDS: population transfer, two-level 

system, Rabi oscillation, Jaynes-Cummings 
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I.  INTRODUCTION 

Population transfer of quantum states plays a 

fundamentally important role in a variety of 

fields of physics [1–5]. For this reason, finding 

an efficient transferring mechanism is an 

important issue in atomic physics. Frequency-

chirped laser [1, 6–8], Stimulated Raman 

Adiabatic Passage (STIRAP) [9,10], and 

Landau-Zener technique [1,12,13] are 

prominent approaches in stable population 

transfer which have many experimental and 

theoretical applications in quantum optics. 

One of the fundamental schemes for full 

quantum modeling of the system dynamics is 

the Jaynes-Cummings (JC) model [13–15]. JC 

model explains analytically the interaction of a 

quantized electromagnetic field with a two-

level system. The early history of this model 

returns to magnetic resonance [16-17] and it 

was presented in 1963 by Jaynes and 

Cummings [18]. The JC model is 

experimentally realized with the high-Q 

superconducting cavities and a Rydberg 

atom [19]. This scheme describes several 

interesting phenomena such as collapse and 

revivals [20], atom-field entanglement [19, 

21], squeezing [22–24], and Rabi Oscillation 

(RO) [15]. 

Rabi Oscillation was first introduced in 1937 

and explained by the interaction of the 

oscillating magnetic field and the magnetic 

moments [25]. The Rabi oscillations mainly 

describe the interaction of the two-level atom 

with a radiation field [26]. Such behavior is 

observed in the different fields such as 

quantum dots  [27, 28], trapped ions [29, 30], 

superconducting quantum devices [31], 

semiconductors [32], surface plasmons [33], 

Bose-Einstein condensates [34], diamond 

nitrogen-vacancy centers [35] and Josephson 

junction qubits [36].  

Here, we have numerically and analytically 

studied the population transfer in a two-level 

system using the Jaynes-Cummings model. In 

this method, the variation of Rabi Oscillations 

and transition probabilities are investigated 

using sudden frequency change and it is shown 

that by tuning the time of frequency boost, the 

complete population transfer can be obtained. 
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II. THEORETICAL MODEL 

In this work, the transition probabilities have 

been studied using a full quantum model of the 

Jaynes-Cummings (JC). When an external 

electric field interacts with a two-level system, 

the JC Hamiltonian (Eq. 1) includes three 

terms for the atom, field, and interaction 

between them respectively as following [37]:  

 

†
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 (1) 

where ħ is Planck constant, ω0 is the atomic 

transition frequency, ωL is the laser frequency. 

As well as a, a
†
 are annihilation and creation 

operators respectively, and σ-, σ+, σz are Pauli 

spin matrices. In this definition, ω1 describes 

the coupling strength between atom and field 

which is determined by the atomic transition 

dipole moment and the laser field and is 

proportional to Rabi frequency [37]: 
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By acting the JC Hamiltonian (Eq. 1) on 

eigenstates |g, n› (ground state, n photons) and 

|e, n-1› (excited state, n photons) (Eq. 3), the 

final Hamiltonian (Eq. 4) can be obtained [37].  
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Finally, by using this Hamiltonian (Eq. 4) and 

by numerically solving the time-dependent 

Schrödinger equation the transition 

probabilities are obtained using Runge–Kutta 

method. In this calculation, n is equal to one. 
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It is worth mentioning that for simplicity, all 

the parameters are dimensionless by the 

relation (5) in our calculations. 
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III.  RESULTS AND DISCUSSION 

As mentioned before, when a two-level atom 

interacts with a resonant external field, the 

system population oscillates between the 

ground and excited states. Here, the system 

population transfer and variation of Rabi-

oscillations have been investigated by a 

sudden change in laser frequency towards 

achieving the stable and complete population 

transfer. 

In section A, the effect of a sudden increase in 

the laser frequency on the transition 

probabilities has been investigated. In section 

B, the transition probabilities using two 

frequency boosts have been studied. 

Moreover, it is shown that the analytical 

solution of transition probabilities is in 

agreement with the numerical solution in 

section C. 

A. Sudden increase in the laser frequency 

In Fig. 1, the transition probabilities versus 

time are depicted for ῶ1=0.1. The initial and 

final normalized laser frequency is considered 

ῶa and ῶb, respectively. In order to investigate 

the effect of the sudden increase of the laser 

frequency, the time of the frequency change is 

set when the probability of the initial ROs is 

minimum and maximum in the left and right 

column in Fig. 1, respectively. Also in the 

middle column, this frequency increase is 

tuned when the probability of the initial ROs is 

in half of the maximum. This figure reveals 
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that by the sudden increase in the laser 

frequency i) the amplitude of the probability 

oscillation is intensively decreased and 

whereby the final probability stability is 

enhanced. ii) The probability of system 

population transfer remains constant at the 

same probability of the frequency boost time. 

Therefore, it is possible to achieve the desired 

probability by adjusting the time of the sudden 

increase of the laser frequency. Indeed, the 

boosting time plays a key role in the final 

probability. So, in order to achieve the 

maximum possible probability, the time of the 

frequency boost is set to the time that the 

probability of the initial ROs is maximum 

(right column). Accordingly, the complete 

transition (Fig. 1 (f)) is observed when the 

initial ROs oscillate between zero and one 

(middle row). It means that the initial 

frequency is tuned to the atomic transition 

frequency (ῶa=1). This figure also shows that 

by decreasing (upper row) or increasing (lower 

row) the initial frequency, probabilities are 

reduced. 

In [19] it has been shown that by applying the 

chirped laser source in a limited time interval, 

the population of the states can be tuned in 

which the results are similar to the method of 

the frequency boost that is proposed here. 

 
Fig. 1. Transition probability versus time -100< 

t <100, ῶ1=0.1 (a), (b), (c): ῶa=0.8, ῶb=5 (d),(e), 

(f): ῶa=1, ῶb=5 (g), (h), (i): ῶa=1.2, ῶb=5. 

The transition probability versus time for 

different final laser frequencies is illustrated in 

Fig. 2, in which the initial laser frequency is 

equal to the atomic transition frequency. The 

time of the frequency boost is adjusted when 

the probability of the initial ROs is half of the 

maximum (0.5). This figure shows that the 

amplitude of the secondary ROs is reduced by 

increasing the final laser frequency. Therefore, 

by increasing the frequency differences, stable 

population transfer with the lowest oscillation 

can be achieved. 

 
Fig. 2. Transition probability versus time -50< 

t <50, ῶ1=0.1, ῶa=1 (a) ῶb=1.5 (b) ῶb=2 (c) 

ῶb=5. 

In Fig. 3 transition probability versus time is 

depicted for different coupling strengths while 

ῶa=1, ῶb=5. The time of the frequency 

changing is tuned to the complete transition 

probability. As the ROs frequency increases 

by increasing the coupling strength, the 

frequency should change more abruptly to 

achieve the complete population transfer. In 

other words, by decreasing the coupling 

strength, the population transfer would be 

insensitive to the small variations of the 

frequency boost time, and thus the robustness 

increases. 

 
Fig. 3. Transition probability versus time -200< 

t <200, ῶa=1, ῶb=5 (a) ῶ=0.01 (b) ῶ1=0.05 (c) 

ῶ1=0.1. 

It can be inferred that in the sudden frequency 

boost method, the robust and complete 

population transfer would be achieved by 

adjusting the time of the frequency changing, 

the value of frequency-changing, and coupling 

strength. 
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B. Robust population transfer using two 
frequency boosts 

So far, the population can be only transferred 

to the excited state by adjusting system 

parameters. In this section, the population 

transfer is investigated in such a way that it 

ensures that the system has been in the ground 

state for a long time ago. Then it tries to 

transfer this population to the excited state. To 

achieve this goal, the two sudden frequency 

boosts are proposed. The transition probability 

versus time for ῶ1=0.1 is depicted in Fig. 4. 

The initial, second, and final laser frequencies 

are considered as ῶa, ῶb, and ῶc, respectively. 

As can be seen, ῶb is tuned to the atomic 

transition frequency. All population is in the 

ground state if the time of first sudden 

changing of the laser frequency is set to when 

the probability of the second ROs is minimum. 

After that by adjusting the final frequency 

boost to when the probability of the second 

ROs is maximum, the stable and complete 

population transfer occurs. 

-200 -100 60 200
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1
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b
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it
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Time  
Fig. 4. Transition probability versus time -200< 

t <200, ῶ1=0.1, ῶa=3, ῶb=1, ῶc=3. 

C. Analytical solution 

In this section, by analytical solution, the 

stable and full population transfer to the 

excited state is investigated. For this aim, the 

eigenvalue of JC Hamiltonian (Eq. 6) is 

calculated (Eq. 7). 
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Then by solving the time-dependent 

Schrödinger equation, the wave function is 

achieved: 
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where Ψ0 is the wave function in the initial 

condition, t0 is the initial time, Ψt and t are the 

final wave function and the final time, 

respectively. 
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To find the final wave function, we rewrite the 

Hamiltonian in the diagonal form (Eq. 9). The 

d index expresses that the Hamiltonian is 

diagonal. In this solution, R is the operator 

transformation (Eq. 11) which is obtained by 

Eq. 10. In this relation, Ψ1(t) and Ψ2(t) are the 

wave functions in the ground and excited state, 

respectively. 
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 (13) 

Finally, by solving the Schrödinger equation 

(Eq. 9), the wave function (Eq. 12) and so the 

final transition probability can be achieved. In 

this calculation, bstt  is the time of the 

frequency boost. In relation (12), the wave 

function is obtained before (a) and after (b) of 

the frequency variation. The parameters of this 

relation are shown in Eq. 13. In this work, it is 

assumed that the system has been in the 

ground state for the initial time. 

 
Fig. 5. Transition probability versus time -100< 

t <100, ῶ1=0.1, ῶa=1, ῶb=5 (a) numerical 

solution (b) analytical Solution. 

IV. CONCLUSION 

In this work, the population transfer in a two-

level system has been numerically and 

analytically studied for a sudden boost of the 

laser frequency. The population transfer is 

investigated by numerically solving the 

Jaynes-Cummings Hamiltonian. This method 

reveals that by a sudden increase in the laser 

frequency, the amplitude of the probability 

oscillation is intensively decreased. In 

addition, the system probability remains 

constant at the same probability of the 

frequency boost time. Therefore, by adjusting 

the coupling strength, the value, and the time 

of the laser frequency boost, complete 

population transfer can be achieved. It has also 

shown that the numerical results are in 

agreement with the analytical calculations.  
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