This paper aims to evaluate the time-dependent Casimir-Polder force of a moving chiral molecule and a magnetodielectric chiral body at finite temperature. The chiral body can be an ensemble of molecules in a biological environment. The temporal evolution of the Casimir-Polder force is considered. The dynamical Casimir-Polder is arising from the movement of the chiral molecule and self-dressing effect is calculated and specific dependence of the force on the velocity, distance and material properties are found. To give an example, the Casimir force of a dimethyl disulfide, which moves above a perfect mirror with positive chirality, is studied. It was observed that the self-dressing part of the Casimir-Polder force was larger than the velocity-dependent part.

** **

Type of Study: Research |
Subject:
Special

Received: 2019/07/24 | Revised: 2019/09/6 | Accepted: 2019/10/4 | Published: 2020/09/10

Received: 2019/07/24 | Revised: 2019/09/6 | Accepted: 2019/10/4 | Published: 2020/09/10

1. M. Bordag, G.L. Klimchitskaya, U. Mohideen, and V.M. Mostepanenko, Advances in the casimir effect, Oxford Science Publications, Oxford, 2009. [DOI:10.1093/acprof:oso/9780199238743.001.0001]

2. H.B.G. Casimir and D. Polder, "The influence of retardation on the London-van der Waals forces," Phys. Rev. Vol. 73, PP. 360-372, 1948. [DOI:10.1103/PhysRev.73.360]

3. H.B.G. Casimir, "On the attraction between two perfectly conducting plates," Indag. Math. Vol. 10, PP. 261-263, 1948.

4. P.W. Milonni, The quantum vacuum: an introduction to quantum electrodynamics, Academic Press, San Diego, 1994. [DOI:10.1016/B978-0-08-057149-2.50014-X]

5. M.A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, and U. Dorner, "Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror," Phys. Rev. Lett. Vol. 91, PP. 213602 (1-4), 2003. [DOI:10.1103/PhysRevLett.91.213602]

6. P. Bushev, A. Wilson, J. Eschner, C. Raab, F. Schmidt-Kaler, C. Becher, and R. Blatt, "Forces between a single atom and its distant mirror image," Phys. Rev. Lett. Vol. 92, PP. 223602 (1-4), 2004. [DOI:10.1103/PhysRevLett.92.223602]

7. S. Mason, "Biomolecular homochirality," Chem. Soc.Rev. Vol. 17, PP. 347-359, 1998. [DOI:10.1039/cs9881700347]

8. D. Butcher, Quantum theory of light and dispersion forces in non- reciprocal and bianisotropic media, PhD Thesis dissertation, Imperial College, London, 2014.

9. D.T. Butcher, S.Y. Buhmann, and S. Scheel, "Casimir-Polder forces between chiral objects," New J. Phys. Vol. 14, PP. 113013 (1-18), 2012. [DOI:10.1088/1367-2630/14/11/113013]

10. T.L. Ferrell and R.H. Ritchie, "Dynamical and geometrical effects on the physisorption of atoms," Phys. Rev. A, Vol. 21, PP. 1305-1311, 1980. [DOI:10.1103/PhysRevA.21.1305]

11. R. Vasile and R. Passante, "Dynamical Casimir-Polder force between an atom and a conducting wall," Phys. Rev. A, Vol. 78, PP. 032108 (1-7), 2008 [DOI:10.1103/PhysRevA.78.032108]

12. R. Messina, R. Vasile, and R. Passante, "Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall," Phys. Rev. A, Vol. 82, PP. 062501 (1-7), 2010. [DOI:10.1103/PhysRevA.82.062501]

13. H.R. Haakh, C. Henkel, S. Spagnolo, L. Rizzuto, and R. Passante, "Dynamical Casimir-Polder interaction between an atom and surface plasmons," Phys. Rev. A, Vol. 89, PP. 022509 (1-12), 2014. [DOI:10.1103/PhysRevA.89.022509]

14. P. Barcellona, R. Passante, L. Rizzuto, and S.Y. Buhmann, "Dynamical Casimir-Polder interaction between a chiral molecule and a surface," Phys. Rev. A, Vol. 93, PP. 032508 (1-10), 2016 [DOI:10.1103/PhysRevA.93.032508]

15. S. Y. Buhmann, Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction, Springer Tracts Mod. 2012. [DOI:10.1007/978-3-642-32466-6]

16. J.R. Ackerhalt, P.L. Knight, and J.H. Eberly, "Radiation reaction and radiative frequency shifts," Phys. Rev. Lett. Vol. 30, PP. 456-466, 1973. [DOI:10.1103/PhysRevLett.30.456]

17. S.Y. Buhmann, Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir Polder and van der Waals Forces, Springer Tracts Mod. Phys. 2012. [DOI:10.1007/978-3-642-32466-6_6]

18. A. Rauk, "Chiroptical properties of disulfides. Ab initio studies of dihydrogen disulfide and dimethyl disulfide," J. Am. Chem. Soc. Vol. 106, PP. 6517-6524, 1984. [DOI:10.1021/ja00334a010]