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ABSTRACT— In this paper, we study the 

entanglement of two-level atoms near a 

spherical silver nanoparticle. By employing the 

Von Neumann equation and utilizing of the 

electromagnetic Green’s tensor associated with 

a dispersive and dissipative dielectric sphere, 

the decay rates and the Lamb shift of the 

atomic system are obtained. Then, by using the 

concurrence measure, we calculate the degree 

of entanglement of the atomic system. We 

observe that the decay rates severely increase 

near the excitation frequency of the localized 

plasmon-polariton, while the concurrence value 

is nearly zero. 

 

KEYWORDS: Decay rates, Localized surface 

plasmon-polariton, Entanglement, 
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I.  INTRODUCTION 

Quantum entanglement is one of the most 

prominent features of quantum mechanics, 

which has attracted much attention in various 

physical fields, such as quantum optics, 

quantum information and quantum 

computation [1]. In fact, entanglement is a 

direct consequence of the superposition 

principle in quantum mechanics that does not 

have a classical counterpart. The entanglement 

makes it impossible to characterize the state of 

a composite system completely in terms of 

product states of constituent subsystems. 

In general, a quantum state of a bipartite 

system is separable, if its density operator can 

be written as i i i

AB A Bi
P     in which 

0iP   ، 1i

i
P   and 

 
i

A B
  are the density of 

the A (B) sub-system operators [2]. Due to the 

inevitable interactions between atomic sub-

systems and the environment, a pure state will 

be driven to a mixed state under the 

environment induced decoherence and 

dissipation. Therefore, it is very difficult to say 

whether a system with an arbitrary state is 

separable. Hence, we need an appropriate 

measure to determine the degree of 

entanglement. For mixed states with the 

Hilbert space of dimension 2×2, the 

concurrence and the negativity are appropriate 

measures of the entanglement [3]. 

In this paper, we investigate the entanglement 

dynamic between two identical two-level 

atoms located near a silver nanosphere (SNS) 

by utilizing the concurrence. The two-atomic 
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system is one of the simplest composite 

systems, which can show the fundamental 

features of quantum mechanics such as 

entanglement. The metallic nanosphere, 

however, can exhibit a localized surface 

plasmon (LSP) resonance at the frequency of 

the atomic transition. Due to the enhancement 

of the local density of states (LDOS) 

approximate to the SNS, we expect that the 

decay rates and subsequently the concurrence 

would be significantly different at frequencies 

that two atoms resonantly coupled to the LSP. 

II. BASIC EQUATIONS 

We consider a two identical two-level atoms  

1A  and 2A  with identical transition 

frequencies, 0 , at distance 1 2r r r z


   , 

from the center of a SNS with radius  . The 

origin of the coordinate system coincides with 

the center of the SNS and the two identical 

atoms (TIA) are placed symmetrically outside 

the SNS on the z axis of the coordinate system. 

To describe the quantum features of the TIA-

SNS interactions, a quantization scheme of the 

electromagnetic field in the presence of 

absorbing medium is needed. The scheme was 

developed based on two approaches: canonical 

[4-10] and phenomenological [11-13] 

methods. In the present paper, we use the 

rigorous canonical formalism. Based on this 

microscopic approach, the quantized electric 

field is given by [8, 10, 14] 

   

 

2
3

2

0

, r (r ', ) , ,

f , e H.C.,

I

i t

i d
c




   



 



 

E r G r r

r

(1) 

where H.C. denotes Hermitian conjugate, 0  

is the vacuum permittivity, c  is the vacuum 

speed of light, I  is the imaginary part of the 

permittivity function,  . Here,  ,f r  is the 

annihilation operator of the electric excitation 

of the system satisfying the bosonic 

commutation relations, 

       †, , , ' ' '          f r f r r r  and 

   f , , f , ' 0    r r . The electromagnetic 

Green’s tensor (GT),  , ,G r r  describing 

the system response at r  to a point source at 

r , is determined by the Helmholtz equation:  

     
2

2
, , , ,

c


   

 
     

 
r G r r r r I  

(2) 

where I  is the identity tensor. 

The dynamics of the density operator   for 

the TIA, after tracing out over the degrees of 

freedom of the field, can be described by a 

master equation [15]: 

0 ,

,

,

, ,

2 ,

z

j i j i j

j i j

ij i j j i i j

i j

i s i s s
t

s s s s s s


  

   

 

     


         

    

 



 (3) 

where  is the reduced density operator of the 

atomic system, j j js e g   and 

j j js g e   are, respectively, the raising and 

lowering operators between the ground state 

jg  and the excited state je  of the th atom, 

and  
1

2

z

j j j j js e e g g  . Here the 

parameter 
ij  for  i j  describes the atomic 

spontaneous emission jth atom, and for  i j  

represents the collective damping rates of the 

TIA. This parameter is defined in terms of the 

electromagnetic GT of the system as follows 

[14]:  

*0
i j 02

0

2
Im p G( , , ) p ,ij i j

c


 


   
 

r r  (4) 

where p ( 1,2)i i   is the dipole moment of the 

i th atom, Im refers to the imaginary part of the 

function. In addition, the parameter ij  is 

defined by: 
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*0
i j 02

0

1
Re p G( , , ) p .ij i j

c





     
 

r r  (5) 

where Re denotes the real part of the function. 

Here, the parameter 
ij  for  i j  describes 

the Lamb shift of the th level of the TIA, and  

 i j  indicates the dipole-dipole interaction 

between TIA. 

In order to calculate the degree of 

entanglement of the atomic system, we use the 

concurrence measure. This measure in terms of 

the eigenvalues of the matrix  , that is 

 ( 1, ,4)i i   , is given by [16]: 

 1 2 3 4max 0, ,C         (6) 

where   is defined as:  

* .y y y y       
 

Here, y represents the y component of the 

Pauli matrix and  
 denotes the complex 

conjugate of . 

By finding the solutions of Eq. (3) and 

substituting them into Eq. (6), the concurrence 

can be written as [14]:  

   2 2( ) sinh sin 2 ,st

c cC t e t


  
   (7) 

where the collective parameters s , c , s  and c  

are defined by:  

11 22 ,s   
 12 21,c   

 

11 22 ,s    12 21.c    (8) 

From the above equations, it is clear that all 

information we need to calculate the 

concurrence is contained in the 

electromagnetic GT. Therefore, we must first 

calculate the GT of the system. By using the 

scattering superposition method, the EGT can 

be written as [17]: 

 
         , , , .G r r G r r G r r

fs f ss

o f S     (9) 

Here, the superscript ( )fs  denotes the layers 

where the field point and source point locate, 

the vacuum GT,  ,o
G r r , corresponds to the 

contribution from the source in the infinite 

vacuum space while the scattering GF, 

 ( ) ,f s

S
G r r , reflects the contribution of the 

source due to the presence of the nanosphere 

interface. When the field and source points are 

located out of the SNS, these two contributions 

in the spherical coordinate system can be 

expressed as follows: 

     
 

 

 

        

0

0 2
0 01

(1) (1)

1 1 1 1

ˆˆ 2 1
G r, r 2

4 1

M M

!

N

!

N ,

n
s

m

n m

mn mn mn mn

n mikrr n
r r

k n n n m

k k k k

 




 


     

 

  

  

 (10) 

    
 

 

 

        

(11) 01

0 0

11 (1) (1) 11 (1) (1)

1 1 1 1

!

!

2 1
G r, r 2

4 1

M M N N .

n

S m

n m

M mn mn N mn mn

n mik n

n n n m

B k k B k k






 


  

 

  

  

 (11) 

Here, the prime (non-prime) denotes the 

coordinates of the source (field) point, M  and 

N  are the spherical vector wave functions 

defined as [17]: 

     

 
 

( ) ( )

1 1

( )

1

sin ˆcos
cossin

coscos ˆ,
sin

e
o

l l m

n nmn

m

nl

n

m
k z k r P m

dP
z k r m

d

 











M

 

 (12) 

 
   

 

 
 

( ) ( )

1 1

1

( )

1

1

cos1
ˆ( ) cos

sin

1

cos sincos ˆ ˆcos .
sin cossin

e
o

l l m

n nmn

l

n

m

n m

n

n n
k z k r P m r

k r

d rz k r

k r dr

dP m
m P m

d

 


  

 




  

 
 
 

N

 

 (13) 
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where 1k c , and  ( )

1

l

nz k r  for 0l   and 

1l   indicate the first type spherical Bessel 

function,  1nJ k r  , and the third-type spherical 

Bessel function or the first-type spherical 

Hankel function,    1

1nh k r , respectively. By 

imposing the boundary conditions on the GT at 

the surface of the SNS, the unknown 

coefficients 11

,M NB  are given by: 

11 ,

, ,1 ,H V

M N FB R   (14) 

where the subscript F  refers to the centrifugal 

wave. Furthermore, the superscripts of the TE 

and TM waves are represented by the H and V, 

respectively. Here, the equivalent reflection 

coefficient ,

,1

H V

FR  is defined as: 

1 2 21 11 2 1 11 21
1

1 2 21 11 2 1 21 11

,H

F

k k
R

k k

     

   

  


  
 (15) 

1 2 21 11 2 1 11 21
1

1 2 21 11 2 1 21 11

,V

F

k k
R

k k

     

   

  


  
 (16) 

where 

  ,il n i lj k a   (17) 

 (1) ,il n i lh k a  (18) 

 1
,

i l

n

il

k a

d j

d


 


 


     (19) 

 (1)

1
.

i l

n

il

k a

d h

d


 

 


     (20) 

Now, we can use equation (8) to the TIA 

system where their atomic dipole moment may 

be perpendicular to the interface along the z 

axis and/or parallel to the interface along the x 

axis, with the GT obtained in Eqs. (9)-(11) and 

making use of the symmetry of our system, 

after some algebra and manipulations, the 

collective parameters for the two special cases 

of radial and tangential directions can be 

written as: 

   
   

   

(1)1
11, 1 12 2

0 1

2
11 (1)

1

2 1 16
Im

4

,

rr n n

n

N n

n n nik
h k r J k r

k r

B h k r




 





  
 







 

   
   

   

(1)1
12, 1 12 2

0 1

2
11 (1)

1

2 1 16
Im ( 1)

4

,

n

rr n n

n

N n

n n nik
h k r J k r

k r

B h k r




 





 
 








 

   
   

   

(1)1
12, 1 12

0 1

2
11 (1)

1

2 1 13
Re ( 1)

4 ( )

.

n

rr n n

n

N n

n n nik
h k r J k r

k r

B h k r



 





 
   






  

 

   

     

1
11,

0

(1) (1)

1 1 1 1

2 2
11 (1) 11 (1)

1 1

2 16
Im

4 2

( ) ( )

( ) ,

n

n n n

M n N n

nik

h k r J k r h k r J k r

B h k r B h k r






 






 



   

  




 

 

   

     

11
12,

0

(1) (1)

1 1 1 1

2 2
11 (1) 11 (1)

1 1

2 16
Im ( 1)

4 2

( ) ( )

( ) ,

n

n

n n n n

M n N n

nik

h k r J k r h k r J k r

B h k r B h k r






 







 



   

  




 

 

   

     

11
12,

0

(1) (1)

1 1 1 1

2 2
11 (1) 11 (1)

1 1

2 13
Re ( 1)

4 2

( ) ( )

( ) ,

n

n

n n n n

M n N n

nik

h k r J k r h k r J k r

B h k r B h k r





 







   



   

  




 

where 
 (1)

(1) 1
( )

n

n

d h
h

d

 


 

     and 

 1
( )

n

n

d J
J

d

 


 

    . 

Finally, by inserting the above equations in Eq. 

(7), the concurrence of the atomic system is 

obtained. 

III. NUMERICAL RESULTS AND 

The complexity of the calculated equation for 

the concurrence makes it difficult to predict 

the results analytically. Therefore, we perform 

the numerical calculations for the collective 

decay rate (8) and the concurrence (7). To do 
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this, we characterize the permittivity function 

of the SNS by the Drude-Lorentz model: 

 2 2

m p i        , where  is the static 

permittivity, p  is the plasma frequency and 

 is the damping coefficient of the SNS. Here, 

we take the typical 

parameters 6  , 7.90p ev   and 51mev   

for the SNS [18]. For our numerical 

calculations, we assume a SNS with radius 

20a nm  and place the TIA at 22r nm , that 

is 2nm  above the surface of the SNS. These 

material parameters imply a surface plasmon-

polariton resonance at 

7.90 1 2.97s eV eV    .  

              
                  

s   

0

s



 

 
Fig. 1. The dimensionless spontaneous emission rate 

0s   as a function of a dimensionless parameter 

0 s  . Here, 
0  is the spontaneous emission rate of 

a single atom in the vacuum. 

In Fig. 1, the spontaneous emission rate of a 

single excited atom near the SNS is plotted. As 

it is seen, the decay rate 
0s   is dramatically 

increased at the frequency 0 s  . As it is 

known, the decay rate of atoms strongly 

depends on their local environment. In other 

words, the decay rate is proportional to the 

electromagnetic LDOS. Therefore, due to 

exciting LSP in the SNS, the LDOS is severely 

enhanced. In this manner, we observe a peak in 
the decay rate of the TIA at the excitation 

frequency of the LSP. 

In Fig. 2, the time evolution of the concurrence 

(7) as function of the dimensionless time 0 t  is 

plotted for two different cases that atomic 

dipole moments are perpendicular (right panel) 

and parallel (left panel) to the SNS, 

respectively. The blue solid and the red dot-

dashed lines represent the concurrence of the 

TIA when two atoms are at resonance with the 

LSP frequency 0 s  and far from the LSP 

frequency, 0 0.1 s  , respectively. In all 

curves, the concurrence is zero at the initial 

time 0t  . This is as it should be, because the 

TIA is initially prepared in a separable state 

1 2e g . As time progresses, in the case that 

two atoms are at resonance with the SNS, the 

concurrence is nearly zero. This is a result of 

the fact that LSP resonance frequency for the 

SNS occur at frequency where the absorption 

is so strong so that the emitted photon by the 

excited atom is absorbed via the SNS. 

Therefore, there is no entanglement between 

the TIA. 

 

 
Fig. 2. The time evolution of the concurrence C as a 

function of a dimensionless parameter
0 t . The top 

and bottom panels correspond to the case that the 

atomic dipole moment are perpendicular and 

parallel to the surface of the SNS, respectively. 

When the transition frequency of the TIA is far 

from the excitation frequency of the LSP, the 

concurrence is characterized by a fast initial 

increase followed by a very slow decay. This 

dynamics can be easily understood from the 

time evolution of the populations of the 

collective symmetric and antisymmetric states 

 1 2 1 2 / 2e g g e    [14] 

0 s 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

op
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                               5 / 8

http://ijop.ir/article-1-388-en.html


R. Mombeiny Godazhdar et al. The Entanglement of a Two-Atomic System in the Presence … 

104 

In contrast to the SNS, LSP resonance 

frequencies for a nanoshell depend 

significantly on the shell thickness. Therefore, 

the LSP resonances occur at lower frequencies 

where the absorption inside the nanoshell is 

weak. Therefore, we expect that the 

entanglement between two atoms can be 

mediated by phonons through the nanoshell, 

which is under construction. 

IV. CONCLUSION 

We have studied the entanglement of two-level 

atoms near a spherical silver nanoparticle. By 

using the concurrence measure, the entanglement 

dynamics of the aforementioned atomic system is 

investigated. The numerical results show 

significant enhancement in the decay rates near the 

excitation frequency of the localized plasmon-

polariton, while the concurrence is almost zero. 
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