Volume 14, Issue 1 (Winter-Spring 2020)                   IJOP 2020, 14(1): 31-38 | Back to browse issues page


XML Print


1- Nanoscience and Nanotechnology Research Center, University of Kashan, Kashan, Iran
2- Photonic and Plasma group, Physics Department, University of Kashan, Kashan, Iran
Abstract:   (3331 Views)
In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to detect vibrational modes of phenylalanine amino acid up to the concentration of 10-7 M. The importance of phenylalanine amino acid detection is due to the early diagnosis of phenylketonuria in neonates. Therefore, the blood plasma of a healthy neonate and a neonate with phenylketonuria disease were adsorbed on the SERS substrates. They enhance the intensity of molecular vibration peaks of phenylalanine amino acid of two kinds of blood plasmas. The intensities of molecular vibrations of unhealthy plasma are stronger than healthy plasma due to the higher concentrations of phenylalanine amino acid, which is the sign of Phenylketonuria disease.

 
Full-Text [PDF 318 kb]   (1854 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/07/2 | Revised: 2019/09/24 | Accepted: 2019/10/27 | Published: 2020/09/10

References
1. E. Podstawka, Y. Ozaki, and L.M. Proniewicz, "Part I: Surface-Enhanced Raman Spectroscopy Investigation of Amino Acids and Their Homodipeptides Adsorbed on Colloidal Silver," Appl. Spectrosc. Vol. 58, pp. 570-580, 2004. [DOI:10.1366/000370204774103408]
2. N. Blau, "Review: Genetics of Phenylketonuria: Then and Now," Human Mutation, Vol. 37, pp. 508-515, 2016. [DOI:10.1002/humu.22980]
3. M.L. Cheng, B.C. Tsai, and J. Yang, "Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution," Analytica. Chimica. Acta, Vol. 708, pp. 89-96, 2011. [DOI:10.1016/j.aca.2011.10.013]
4. S. Banta-wright and R. Steiner, "Tandem Mass Spectrometry in Newborn Screening Tandem Mass Spectrometry in Newborn Screening," A. Primer. Neonatal. Nurses, Vol. 18, pp. 41-60, 2004. [DOI:10.1097/00005237-200401000-00005]
5. H.F. Escobar-Morreale, S. Samino, M. Insenser, M. Vinaixa, M. Luque-Ramı'rez, M.A. Lasuncion, and X. Correig, "Metabolic Heterogeneity in Polycystic Ovary Syndrome Is Determined by Obesity: Plasma Metabolomic Approach Using GC-MS," Clinic. Chem. Vol. 58, pp. 999-1009, 2012. [DOI:10.1373/clinchem.2011.176396]
6. V.L. Brumm, D. Bilder, and S.E. Waisbren, "Psychiatric symptoms and disorders in phenylketonuria," Mol. Genet. Metab. Vol. 99, pp. 559-563, 2010. [DOI:10.1016/j.ymgme.2009.10.182]
7. M. Javanmard and R. W. Davis, "Surface-Enhanced Raman Scattering (SERS) for Detection of Phenylketonuria for Newborn Screening," Soc. Photo-Optical Instrument. Eng. (SPIE), Vol. 8954, pp. 89540R-1 (1-7), 2014. [DOI:10.1117/12.2040845]
8. G. McNay, D. Eustace, W.E. Smith, K. Faulds, and D. Graham, "Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications," Appl. Spectrosc, Vol. 65, pp. 825-837, 2011. [DOI:10.1366/11-06365]
9. G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings, and R. Aroca, "Distance Dependence of SERS Enhancement Factor from Langmuir-Blodgett Monolayers on Metal Island Films: Evidence for the Electromagnetic Mechanism," Langmuir, Vol. 2, pp. 689-694, 1986. [DOI:10.1021/la00072a001]
10. P. A. Mosier-Boss, "Review of SERS Substrates for Chemical Sensing," Nano materials for SERS Applications, Vol. 7, pp. 142 (1-30), 2014. [DOI:10.3390/nano7060142]
11. N. Sharifi and N. Taghavinia, "Silver nano-islands on glass fibers using heat segregation method," Mater. Chem. Phys, Vol. 113, pp. 63-66, 2009. [DOI:10.1016/j.matchemphys.2008.07.026]
12. Y. Yin, Z.Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, "Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process," J. Mater. Chem. Vol. 12, pp. 522-527, 2002. [DOI:10.1039/b107469e]
13. E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggig, "Förster resonance energy transfer (FRET) with a donor-acceptor system adsorbed on silver or gold nanoisland films," Phys. Chem. Vol. 11, pp. 9798-9803, 2009. [DOI:10.1039/b909123h]
14. V. Nalladega (Ed.) Scanning Probe Microscopy-Physical Property Characterization at Nanoscale, Chap. 3, E.M. Therézio, M.L. Vega, R.M. Faria, and A. Marletta, Statistical Analysis in Homopolymeric Surfaces, InTech, 2012.
15. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley New York, 1983.
16. S.Y. Lin, M. J. Li, and W.T. Cheng, "FT-IR and Raman vibrational micro spectroscopies used for spectral bio diagnosis of human tissues," Spectroscopy, Vol. 21, pp. 1-30, 2007. [DOI:10.1155/2007/278765]
17. S. R. Emory, W.E. Haskins, and Sh. Nie, "Direct Observation of Size-Dependent Optical Enhancement in Single Metal Nanoparticles," J. Am. Chem. Soc. Vol. 120, pp. 8009-8010, 1998. [DOI:10.1021/ja9815677]
18. Sh. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, "Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis," Biosensors and Bioelectronics, Vol. 25, pp. 2414-2419, 2010. [DOI:10.1016/j.bios.2010.03.033]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.