Volume 14, Issue 1 (Winter-Spring 2020)                   IJOP 2020, 14(1): 57-66 | Back to browse issues page


XML Print


1- Department of Physics, Faculty of Physics, University of Kashan, Kashan, Iran
Abstract:   (3684 Views)
Recently, organo–metal halide perovskites have attracted much attention of the scientific community relating to their successful application in the absorber layer of low-cost solar cells. However, enough is known about the material and device properties, to realize that much remains to be learned.
In this paper, the electrical and optical properties of perovskite solar cells are investigated using the COMSOL Multiphysics simulation program. It is a study of the influences of carrier diffusion length (L), dielectric constant (εr), the valence band offset (VBO) of absorber/hole transport materials (HTM) and illumination intensity on fill factor (FF), short-circuit current density(JSC), performance (PCE), and open-circuit voltage(VOC). Also, J-V characteristics are calculated for different εr values. The simulation results point to the great dependence of efficiency on the carrier diffusion length of absorber layers. It is shown that, to obtain a high rate of efficiency, the relative permittivity should not be higher than 45.
 
Full-Text [PDF 466 kb]   (2679 Downloads)    
Type of Study: Research | Subject: General
Received: 2018/10/31 | Revised: 2019/05/27 | Accepted: 2019/06/29 | Published: 2020/09/10

References
1. M.J. Taghavi, M. Houshmand, M.H. Zandi, and N.E. Gorji, "Modeling of optical losses in perovskite solar cells," Superlattice. Microst. Vol. 97, pp. 424-428, 2016. [DOI:10.1016/j.spmi.2016.06.031]
2. V.J. Babu, S. Vempati, S. Sundarrajan, M. Sireesha, and S. Ramakrishna, "Effective nano structured morphologies for efficient hybrid solar cells," Sol. Energy, Vol. 106, pp. 1-22, 2014. [DOI:10.1016/j.solener.2013.08.037]
3. J. Burschka, N. Pellet, S.J. Moon, R. Humphry, P. Gao, M.K. Nazeeruddin, and M. Gratzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature. Vol. 499, pp. 316-319, 2013. [DOI:10.1038/nature12340]
4. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, and Y.Yang, "Planar heterojunction perovskite solar cells via vapor-assisted solution process," J. Am. Chem. Soc. Vol. 136, pp. 622-625, 2014. [DOI:10.1021/ja411509g]
5. M.A. Green, A. Baillie, and H.J. Snaith, "The emergence of perovskite solar cells," Nat. Photonics, Vol. 8, pp. 506-514, 2014. [DOI:10.1038/nphoton.2014.134]
6. X. Xu, X. Wang, W. Gu, S. Quan, and Z. Zhang, "Study on influences of CdZnS buffer layer on CdTe solar cells," Superlattices Microstruct. Vol. 109, pp. 463-469, 2017. [DOI:10.1016/j.spmi.2017.05.033]
7. O.K. Simya, A. Mahaboobbatcha, and K. Balachander, "Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID Simulation," Superlattices Microstruct. Vol. 92, pp. 285-293, 2016. [DOI:10.1016/j.spmi.2016.02.019]
8. O.K. Simya, A. Mahaboobbatcha, and K. Balachander, "A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program," Superlattices Microstruct. Vol. 82, pp. 248-261, 2015. [DOI:10.1016/j.spmi.2015.02.020]
9. E. Karimi and S.M.B. Ghorashi, "Investigation of the Influence of Different Hole-Transporting Materials on the Performance of Perovskite Solar Cells," Optick, Vol. 16, pp. 650-658, 2016. [DOI:10.1016/j.ijleo.2016.10.122]
10. S.R. Meher, L. Balakrishnan, and Z.C. Alex, "Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: A numerical simulation approach," Superlattices. Microstruct. Vol. 100, pp.703-722, 2016. [DOI:10.1016/j.spmi.2016.10.028]
11. W.I. Nam, Y.J. Yoo, and Y.M. Song, "Geometrical shape design of nanophotonic surfaces for thin film solar cells," Opt. Express, Vol. 24, pp. A1033-A1044, 2016. [DOI:10.1364/OE.24.0A1033]
12. X. Jia, L. Shen, Y. Liu, W. Yu, X. Gao, Y. Song, W. Guo, S. Ruan, and W. Chen, "Performance improvement of inverted polymer solar cells thermally evaporating CuI as an anode buffer layer," Synth. Met. Vol. 198, pp. 1-5, 2014. [DOI:10.1016/j.synthmet.2014.09.035]
13. Y. Jiang, M.A. Green, R. Sheng, and A. Baillie, "Room temperature optical properties of organic-inorganic lead halide perovskites," Sol. Energy Mater. Sol. Cells, Vol. 137, pp. 253-257, 2015. [DOI:10.1016/j.solmat.2015.02.017]
14. E.J. Juarez, R.S. Sanchez, L. Badia, G.Garcia, Y.S. Kang, L. Mora, and J. Bisquert, "Photoinduced giant dielectricbconstant in lead halide perovskite solar cells," J. Phys. Chem. Lett. Vol. 5, pp. 2390-2394, 2014. [DOI:10.1021/jz5011169]
15. L. Kavan and M. Gra¨tzel, "Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis," Electrochim. Acta, Vol. 40, pp. 643-652, 1995. [DOI:10.1016/0013-4686(95)90400-W]
16. H.S. Kim, C.R. Lee, J.H. Im, K.B.Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry, J. H. Yum, J.E. Moser, M. Gra¨tzel, and N.G. Park, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Sci. Rep. Vol. 2, pp. 591 (1-7), 2012. [DOI:10.1038/srep00591]
17. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, Vol. 338, pp. 643-647, 2012. [DOI:10.1126/science.1228604]
18. X. Li, N.P. Hylton, V. Giannini, K.H. Lee, N.J. Daukes, and S.A. Maier, "Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells," Opt. Express, Vol. 19, pp. 888-896, 2011. [DOI:10.1364/OE.19.00A888]
19. D. Liu and T.L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature Photon, Vol. 8, pp. 133-138, 2014. [DOI:10.1038/nphoton.2013.342]
20. A. Asadollahbaik, S.A. Boden, M.D.B. Charlton, D.N.R. Payne, S. Cox, and D.M. Bagnall, "Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation," Opt. Express, Vol. 22, pp. A402-A415, 2014. [DOI:10.1364/OE.22.00A402]
21. M. Liu, M.B. Johnston, and H.J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Vol. 501, pp. 395-398, 2013. [DOI:10.1038/nature12509]
22. P. Loper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipic, S.J. Moon, J.H. Yum, M. Topic, S.D. Wolf, and C. Ballif, "Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry," J. Phys. Chem. Lett. Vol. 6, pp. 66-71, 2015. [DOI:10.1021/jz502471h]
23. L. Liu, Y. Huo, K. Zhao, T. Zhao, and Y. Li, "Broadband absorption enhancement in plasmonic thin-film solar cells with grating surface," Superlattices Microstruct. Vol. 86, pp. 300-305, 2015. [DOI:10.1016/j.spmi.2015.07.065]
24. T. Minemoto and M. Murata, "Theoretical analysis on effect of band offsets in perovskite solar cells," Sol. Energy Mater. Sol. Cells, Vol. 133, pp. 8-14, 2015. [DOI:10.1016/j.solmat.2014.10.036]
25. A.J. Moule, H.J. Snaith, M. Kaiser, H. Klesper, D.M. Huang, M. Gratzel, and K. Meerholz, "Optical description of solid-state dyesensitized solar cells," J. Appl. Phys. Vol. 106, pp. 073-111, 2009. [DOI:10.1063/1.3204982]
26. N. Yamamuro, T. Matsuo, and H. Suga, "Dielectric study of CH3NH3PbX3, (X = Cl, Br, I)," J. Phys. Chem. Solids, Vol. 53, pp. 935-939, 1992. [DOI:10.1016/0022-3697(92)90121-S]
27. D. Poplavskyy and J. Nelson, "Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound," J. Appl. Phys. Vol. 93, pp. 341-349, 2003. [DOI:10.1063/1.1525866]
28. H.J. Snaith and M. Gratzel, "Electron and hole transport through mesoporous TiO2 infiltrated with spiro-MeOTAD," Adv. Mater. Vol. 19, pp. 3643-3647, 2007. [DOI:10.1002/adma.200602085]
29. E. Karimi and S.M.B. Ghorashi, "Simulation of perovskites solar cell with P3HT hole-transporting materials," J. Nano photonics. Vol. 11, pp. 1-15, 2017. [DOI:10.1117/1.JNP.11.032510]
30. T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, Vol. 342, pp. 341-344, 2013. [DOI:10.1126/science.1243982]
31. K. Tanaka,T. Minemoto, and H. Takakura, "Analysis of heterointerface recombination by Zn1_xMgxO for window layer of Cu(In, Ga) Se2 solar cells," Sol. Energy, Vol. 83, pp. 477-479, 2009. [DOI:10.1016/j.solener.2008.09.003]
32. S. Wenger, M. Schmid, G. Rothenberger, A. Gentsch, M. Gratzel, and J.O. Schumacher, "Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction," J. Phys. Chem. C, Vol. 115, pp. 10218-10229, 2011. [DOI:10.1021/jp111565q]
33. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, "Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement," Adv. Mater. Vol. 26, pp. 6503-6509, 2014. [DOI:10.1002/adma.201401685]
34. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy Environ. Sci. Vol. 7, pp. 2619-2623, 2014. [DOI:10.1039/C4EE01138D]
35. G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S.M. haisalkar, and T.C. Sum, "Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3," Science, Vol. 342, pp. 344-347, 2013. [DOI:10.1126/science.1243167]
36. H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, and Y. Yang, "Interface engineering of highly efficient perovskite solar cells," Science, Vol. 345, pp. 542-546, 2014. [DOI:10.1126/science.1254050]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.