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Abstract— First, this study obtained the fields 

of an Airy beam (AiB) with optical vortex (OV) 

for a Fourier transform (FT) system and a 

fractional Fourier transform (fractional FT) 

system; thereafter, their intensity and phase 

patterns were simulated numerically. The 

splitting on each line of the phase pattern 

indicates the position of an OV. The results 

show that the OV position will change when the 

power of the fractional FT (p) changes. 

Moreover, the uniformity of the spot beam 

disappears for the beam with OV. Further, the 

characteristics of an AiB such as number, 

width, height, uniformity of the spot beam and 

the effective beam size will change when there is 

a change in the values of p and z. 

 

KEYWORDS: Fractional FT, optical vortex, 

Airy beam. 

I. INTRODUCTION 

AiB has numerous features and they were 

considered in the last decade. Although the 

concept of the Airy wave package dates back 

30 years [1], the counterpart in optics was only 

demonstrated recently. In 2007, an AiB was 

produced experimentally [2]. In 2008, vector 

evolution, angular momentum and AiB phase 

behavior were investigated [3, 4]. Several 

methods, including a method of the Wigner 

distribution function for describing the 

features of an AiB have been presented [5]. 

Many investigations have been made in this 

regard, such as the propagation of the AiB in 

free space, in the nonlinear medium [6], in the 

turbulence [7] and of the misaligned optical 

system [8]. The propagation of an AiB with 

OV [9, 10] and propagation of an Airy-

Gaussian beam with OV in the chiral medium 

are investigated [11]. In 2012, the researchers 

by studying the AiB showed that the scope of 

the analysis of the AiB characteristic for its 

propagation through the fractional FT system 

is more than the FT system. In this case, 

assuming that a piece of graded-index fiber 

with proper length L is required for 

performing a FT of an input image. If the 

graded-index fiber is cut into pieces, a piece of 

length pl (p<1) just performs the fractional FT 

of the input image [12]. The research in the 

AiB with OV at the fractional FT has not been 

reported. Previously, a study was conducted on 

the AiB that was propagated through the 

fractional FT system. Now, we are inspired by 

the work of the researchers [12], studying the 

AiB with OV that propagates through the 

fractional FT system and then simulate its 

intensity and phase pattern numerically. We 

want to know, how the AiB with OV behaves 

by changing the order of the fractional FT and 

distance in the optical system. 

II. THEORETICAL CONCEPT 

A. FT System 

The field of an AiB is defined with OV as [9]: 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

0 0 0

0

, , 0 exp

exp .
l

d d

E x y z Ai x x ax x Ai y y

ay y x x i y y

= = 

− + −

 (1) 

where the parameters x0 and y0 are transverse 

scales, and a is the truncation factor 

exponential; which characterizes beams, l is 

the topological charge of the vortex. For 

simplicity, we choose the unit topological 
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charge and the OV core center is in the 

coordinates (xd, yd). The Fresnel integral can be 

used to calculate the field of the beam at 

distance z in the FT system [13]. On 

substituting Eq. (1) into (2), the field of the 

AiB with OV can be obtained, after it 

propagates a distance z.  

( )

( ) ( )

( ) ( )

( ) 
( ) ( )

2 2
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 (3) 

By utilizing the convolution theorem, we can 

write the field of the beam as follows [12]. 
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Equation (5) can be expressed as follows 
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 (5) 

B. Fractional FT 

Figure 1 is the general expression of the field 

of an AiB with OV passing through an optical 

system. The Lohmann I optical system and the 

Lohmann II optical system are equivalent, and 

are described by the following transfer matrix 

[14]:  

 
(a) 

 
(b) 

Fig. 1. Optical system for the FrFT, for Lohmann 

(a) I and (b) systems. 
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cos sin

1 sin cos

A B f
R

C D f

 

 

   
= =   

−   
 (6) 

where, φ=πp/2 and p is the order of fractional 

FT [14]. In Fig 1 (a), the distance between the 

input and output planes is 2d=2ftan(φ/2). In 

Fig 1 (b), the distance between the input and 

output planes is d′=fsin(φ). Under the paraxial 

approximation, the Collin formula can be used 

to calculate the field of the AiB passing 

through the Lohmann optical system [12]. 
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  (7) 

Finally, the field of the AiB with OV under 

fractional FT after propagating a distance z by 

employing the convolution theorem, can be 

formulated as: 
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Eq. (8) can be expressed as follows 
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III. NUMERICAL SIMULATIONS AND 

ANALYSIS 

It was assumed that λ=0.53μm, f=1000mm, 

x0=y0=0.1mm, xd=yd=0.3mm and a=10-5. In this 

simulation, Eq. (5), Eq. (9), paraxial approach 

and the method of the Wigner distribution 

function were used. Fig. 2 shows the two-

dimensional intensity pattern for AiB. From 

Fig. 2(a) it can be found that the uniformity of 

the lateral lob of the beam with OV disappears 

while, in Fig. 2(b), the peak uniformity of the 

beam without OV increases. It can also be 

seen in Fig. 2 (a), that the effective size of the 

beam is decreased, the main peak is straitened 

and the width and height of the other peaks are 

also decreased. 
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Fig. 2. Intensity normalized in the x- direction of 

AiB; (a) with OV; (b) without OV. 

 

 
Fig. 3. AiB with OV; (a) intensity and (b) phase 

pattern. 

 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

op
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                             4 / 10

http://ijop.ir/article-1-347-en.html


International Journal of Optics and Photonics (IJOP) Vol. 13, No. 2, Summer-Fall, 2019 

219 

 

 
Fig. 4. Phase pattern of the AiB with OV for; the 

power of fractional FT for (a) p=0.3, (b) p=0.7, (c) 

p=1.3, (d) p=1.7. 

Fig. 3 shows the intensity pattern (a) and phase 

pattern (b). In Fig. 3 (b), the arrow represents 

the position of the OV. Fig. 4 shows the phase 

and intensity patterns of an AiB with OV for 

the different powers of fractional FT, the 

direction of the patterns changes, which is a 

logical conclusion of Eq. (7). 

The position of the OV changes with 

increasing p, and this can be seen in Fig. 4 (a). 

If the value of p is closer to 1, the effective 

beam size will decrease. In Fig. 4 (b), with 

approaching p to 1, the main peak straitens. 

In Fig. 5, for p<1, the beam spot of the AiB 

decreases when the value of p is increased. For 

1<p<2, the beam spot of the AiB increases 

with increasing the value of p. Fig. 6 shows 

the two-dimensional intensity graphs for 

different p. In this case, if the value of p is 

closer to 1 the lateral side lobs will be far from 

the x axis.  
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Fig. 5. Intensity pattern of the AiB with OV for; the 

power of fractional FT for (a) p=0.3, (b) p=0.7, (c) 

p=1.3, (d) p=1.7. 

 

 

 

 
Fig. 6. Intensity normalized in the x - direction of 

AiB with OV; (a) p=0.3, (b) p=0.7, (c) p=1.3, (d) 

p=1.7. 

Figure 7 shows the two-dimensional spot 

beam size (S) graph of the AiB with OV for 

different p. for p<1, the beam spot of the AiB 

decreases when the value of p is increased. For 

1<p<2, the beam spot of the AiB increases 

with increasing value of p. Figs. 8 and 9 show 

the phase and intensity patterns for an AiB 

with OV. We consider the propagation of an 

AiB with OV and the propagation of an AiB 

without OV for fixed parameters λ, f, a, xd, x0 

and by varying the value of z. In this case for 

each z, there is a unique transfer matrix, which 

depends on the distance between the two 

primary and final pages.  
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Fig. 7. Spot beam size (S) of the AiB with OV for 

the powers of the fractional FT (p). 

 

 

 

 

 
Fig. 8. Phase pattern of the AiB with OV for p=0.5 

at; (a) z=0.4d; (b) z=0.5d, (c) z=0.6d, (d) z=0.8d. 
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Fig. 9. Intensity pattern of the AiB with OV for 

p=0.5 at; (a) z=0.4d; (b) z=0.5d, (c) z=0.6d, (d) 

z=0.8d. 

 

 

 

 
Fig. 10. Intensity normalized in the x- direction of 

AiB with OV for p=0.5 at; (a) z=0.4d; (b) z=0.5d, 

(c) z=0.6d, (d) z=0.8d. 
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Figure 10 shows the two-dimensional intensity 

graphs of Eq. (8) for different z. In Fig. 10, the 

lateral side lobs will be far from the x axis 

when the value of z increases. 

Figure 11 shows the two-dimensional spot 

beam size (S) graph of the AiB with OV for 

different z. With increasing the value of z, the 

main peak expands. 

  
Fig. 11. Spot beam size (S) of the AiB with OV for 

different distance (Z). 

IV. CONCLUSION 

The new results and the results obtained earlier 

revealed that, the order of fractional FT p not 

only affects the beam spot size of an AiB, but 

also controls the orientation of the beam spot. 

The position of the OV in an optical system 

changes with changing the power of the 

fractional FT (p). In phase pattern, the process 

of p from 0 to 1, the position of the OV is 

closer to the center. Also, when the power of 

the fractional FT (p) is changed, the patterns of 

intensity and phase also change. In the 

intensity pattern of AiB, there is a uniform 

increase in the height of the peaks. Lobs of the 

AiB with OV are destroyed. With p tending 

towards 1, the main peak straitens and the 

number of spots increases. With increasing the 

value of z, the main peak expands and the 

effective beam size increases. If the value of p 

is closer to 1 and the value of z increases, the 

lateral side lobs will be far from the x axis. 

When p<1, the beam spot of the AiB decreases 

with increasing value of p, and when 1<p<2 

the beam spot of the AiB increases with 

increasing value of p. It was concluded that the 

behavior of the AiB with OV controls changes 

the order of the fractional FT in the optical 

system. 
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