Volume 13, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 13, No 2, Summer-Fall 2019)                   IJOP 2019, 13(2): 127-134 | Back to browse issues page


XML Print


1- Department of Photonics, Graduate University of Advanced Technology
2- Department of Physics, Yazd University
Abstract:   (4013 Views)

In this paper, a stochastic term is added to the classical generalized nonlinear Schrödinger Equation to describe the noise generated when light pulses propagate in a fiber. It has been shown that the generated supercontinuum light source fluctuates up to 50% of its output temporal intensity profile due to noises of different sources. The simulation method devised has been applied to the propagation of finite energy Airy pulse in a photonic crystal fiber and to study the generated noise.

Full-Text [PDF 410 kb]   (2245 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/04/3 | Revised: 2018/06/9 | Accepted: 2018/06/19 | Published: 2019/12/27

References
1. M. Farries, P.ST.J. Russell, M.E. Fermann, and D.N. Payne, "Second harmonic generation in an optical fiber by self-written χ2 grating," Electron. Lett. Vol. 23, pp. 322-324, 1987. [DOI:10.1049/el:19870239]
2. H.M. Masoudi and J.M. Arnold, "Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method," IEEE J. Quant. Electron. Vol. 31, pp. 2107-2113, 1995. [DOI:10.1109/3.477734]
3. K. Bush and S. Lolkes, Photonic Crystal Advance in Design, Fabrication and Characterization, New York: Wiley, 2004. [DOI:10.1002/3527602593]
4. M. Koshiba, K. Hayata, and M. Suzuki, "Improved finite-element formulation in terms of the magnetic-field vector for dielectric waveguide," IEEE Trans. Microw. Theory Tech. Vol. 33, pp. 227-233, 1985. [DOI:10.1109/TMTT.1985.1132985]
5. A. Safaei Bezgabadi, M.A. Bolorizadeh, and A. Zakerifar, "Effect of higher order dispersion on supercontinuum spectrum," Proc. SPIE, Vol. 9586, pp. 95860Y (1-6), 2015 and references therein. [DOI:10.1117/12.2187980]
6. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J.C. Knight, W.J. Wadsworth, P.St.J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. Vol. 88, pp. 173901 (1-4), 2002. [DOI:10.1103/PhysRevLett.88.173901]
7. J.M. Dudley and J.R. Taylor, Supercontinuum Generation in Optical Fibers, Cambridge: Cambridge University Press, 3rd Ed, 2010. [DOI:10.1017/CBO9780511750465]
8. X. Li, D. Zhu, Z. Ma, L. Pan, D. Wang, and J.H Wang, "Feasibility study of the detection of chlorpyrifos residuals on apple skin based on infrared micro-imaging," Opt. Eng. Vol. 51, p. 103204, 2012. [DOI:10.1117/1.OE.51.10.103204]
9. J.G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nature Biotech. Vol. 21, pp. 1361-1367, 2003. [DOI:10.1038/nbt892]
10. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. Vol. 9, pp. 47-74, 2004. [DOI:10.1117/1.1629679]
11. T. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, "Accurate measurement of large optical frequency differences with a mode-locked laser," Opt. Lett. Vol. 24, pp. 881-883, 1999. [DOI:10.1364/OL.24.000881]
12. T. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J.K. Lyngsø, J. Lægsgaard, E.J. Chaney, Y. Zhao, S. You, W.L. Wilson, B. Xu, M. Dantus, and S.A. Boppart "Stain-free histopathology by programmable supercontinuum pulses," Nat. Photonics, Vol. 10, pp. 534-540, 2016. [DOI:10.1038/nphoton.2016.94]
13. R.H. Stolen and C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A, Vol. 17, pp. 1448-1458, 1978. [DOI:10.1103/PhysRevA.17.1448]
14. G.P. Agrawal, Fiber-Optic Communication Systems, New York: Wiley, 2rd Ed, 2007.
15. J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. Vol. 78, pp. 1135-1184, 2006. [DOI:10.1103/RevModPhys.78.1135]
16. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, New Jersey: Wiley, 2007.
17. R.R. Alfano, The Supercontinuum Laser Source, New York: Springer, 2006. [DOI:10.1007/b106776]
18. A. Hasegawa and S. Matsumoto, Optical Solitons in Fibers, Heidelberg: Springer, 2003. [DOI:10.1007/978-3-540-46064-0]
19. P.D. Drummond and J.F. Corney, "Quantum noise in optical fibers. I. Stochastic equations," J. Opt. Soc. Am B, Vol. 18, pp. 139-152, 2001. [DOI:10.1364/JOSAB.18.000139]
20. L. Hollberg, C.W. Oates, E.A. Curtis, E.N. Ivanov, S.A. Diddams, T. Udem, H.G. Robinson, J.C. Bergquist, R.J. Rafac, W.M. Itano, R.E. Drullinger, and D.J. Wineland, "Optical frequency standards and measurements," IEEE J. Quantum Electron. Vol. 37, pp. 1502-1513, 2001. [DOI:10.1109/3.970895]
21. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. Vol. 90, pp. 113904 (1-16), 2003. [DOI:10.1103/PhysRevLett.90.113904]
22. Y. Liu, Y. Zhao, J. Lyngsø, S. You, W.L. Wilson, H. Tu, and S.A. Boppart "Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation." J. Lightwave Technol. Vol. 33, pp. 1814-1820, 2015. [DOI:10.1109/JLT.2015.2397276]
23. G.A. Siviloglo, and D.N. Christodoulides, "Accelerating finite energy Airy beams," Opt. Lett. Vol. 32, pp. 979-981, 2007. [DOI:10.1364/OL.32.000979]
24. M.V. Berry and N.L. Balazs, "Non-spreading wave packets," Am. J. Phys. Vol. 47, pp. 264-267, 1979. [DOI:10.1119/1.11855]
25. J. Baumgart, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wave packets," Nat. Photonics, Vol. 2, pp. 675-678, 2008. [DOI:10.1038/nphoton.2008.201]
26. P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, and D.N. Christodoulides, "Curved plasma channel generation using ultra-intense Airy beams," Science, Vol. 324, pp. 229-232, 2009. [DOI:10.1126/science.1169544]
27. R. Bekenstein, R. Schley, M. Mutzafi, C. Rotschild, and M. Segev, "Optical simulations of gravitational effects in the Newton-Schrödinger system," Nat. Physics, Vol. 11, pp. 872-878, 2015. [DOI:10.1038/nphys3451]
28. M. Shen, J. Gao, and L. Ge, "Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media," Sci. Rep. Vol. 5, pp. 9814 (1-5), 2015. [DOI:10.1038/srep09814]
29. C. Ament, P. Polynkin, and J.V. Moloney, "Supercontinuum generation with femtosecond self-healing Airy pulses," Phys. Rev. Lett. Vol. 107, pp. 243901 (1-5), 2011. [DOI:10.1103/PhysRevLett.107.243901]
30. E. Koleden and E. Platen, Numerical solution of stochastic differential equations, Heidelberg: Springer-Verlag Berlin, 1992. [DOI:10.1007/978-3-662-12616-5]
31. T. Sauer, "Computational solution of stochastic differential equations," WIREs Comput. Stat. Vol. 5, pp. 362-371, 2013. [DOI:10.1002/wics.1272]
32. P.D. Drummond and M. Hillery, The Quantum Theory of Nonlinear Optics, New York: Cambridge Press, 2014.
33. W.J. Thistleton, J.A. Marsh, K. Nelson, and C. Tsallis, "Generalized Box-Muller method for generating -Gaussian random deviates," IEEE Trans. Inf. Theory, Vol. 53, pp. 4805-4810, 2007. [DOI:10.1109/TIT.2007.909173]
34. A. Safaei Bezgabadi and M.A. Bolorizadeh, "Quantum mechanical treatment of the third order nonlinear term in NLS equation and the supercontinuum generation," Proc. SPIE, Vol. 9958, pp. 995803 (1-7), 2016. [DOI:10.1117/12.2236882]
35. A. Safaei, A. Bassi, and M.A. Bolorizadeh, "Quantum treatment of field propagation in a fiber near the zero dispersion wavelength" J. Opt. Vol. 20, p. 055402, 2018. [DOI:10.1088/2040-8986/aab59b]
36. A. Safaei Bezgabadi and M.A. Bolorizadeh, "Quantization of electromagnetic radiation in dielectrics with presence of third order dispersion term," arXiv: 1801.02098, 2018.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.