Volume 12, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 12, No 2, Summer-Fall 2018)                   IJOP 2018, 12(2): 109-118 | Back to browse issues page


XML Print


1- Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran
Abstract:   (8259 Views)

This work presents ZnO nanorods coated multimode optical fiber sensing behavior in response to ethanol solution. The sensor operates based on modulation of light intensity which arises from manipulation of light interaction with the ambient environment in sensing region. For this purpose, two steps are experimentally applied here; etching and then coating fiber with ZnO nanorods to provide stronger evanescent waves causing an enhanced interaction. Long length of fiber (15 mm) was etched uniformly and then well-ordered ZnO nanorods were grown hydrothermally on the core of optical fiber. Fiber coated with ZnO demonstrated an enhanced sensing performances such that response time decreased to 0.6s, linearity increased to 97% and sensitivity improved. Applicable features of the proposed device such as fast response time and high linearity make it favorable candidate for fiber optic sensing applications.

Full-Text [PDF 739 kb]   (3003 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/07/1 | Revised: 2019/01/5 | Accepted: 2017/09/14 | Published: 2018/12/12

References
1. J. Gao, T. Gao, and M. J. Sailor, "Porous-silicon vapor sensor based on laser interferometry," Appl. Phys. Lett. vol. 77, no. 6, pp. 901-903, 2000. [DOI:10.1063/1.1306640]
2. H. Tang, Y. Li, C. Zheng, J. Ye, X. Hou, and Y. Lv, "An ethanol sensor based on cataluminescence on ZnO nanoparticles," Talanta, vol. 72, no. 4, pp. 1593-1597, 2007. [DOI:10.1016/j.talanta.2007.01.035]
3. D. Simon, R. Czolk, and H. Ache, "Doped sol-gel films for the development of optochemical ethanol sensors," Thin Solid Films, vol. 260, no. 1, pp. 107-110, 1995. [DOI:10.1016/0040-6090(94)06483-0]
4. S. Petrova, Y. Kostov, K. Jeffris, and G. Rao, "Optical ratiometric sensor for alcohol measurements," Analytical Lett. vol. 40, no. 4, pp. 715-727, 2007. [DOI:10.1080/00032710601017847]
5. G. Orellana, A. M. Gomez-Carneros, C. de Dios, A. A. Garcia-Martinez, and M. C. Moreno-Bondi, "Reversible fiber-optic fluorosensing of lower alcohols," Anal. Chem. vol. 67, no. 13, pp. 2231-2238, 1995. [DOI:10.1021/ac00109a050]
6. P. Blum, G. J. Mohr, K. Matern, J. Reichert, and U. E. Spichiger-Keller, "Optical alcohol sensor using lipophilic Reichardt's dyes in polymer membranes," Anal. Chem. Acta, vol. 432, no. 2, pp. 269-275, 2001. [DOI:10.1016/S0003-2670(00)01363-5]
7. D. Cleveland, M. Carlson, E. D. Hudspeth, L. E. Quattrochi, K. L. Batchler, S. A. Balram, S. Hong, and R. G. Michel, "Raman spectroscopy for the undergraduate teaching laboratory: Quantification of ethanol concentration in consumer alcoholic beverages and qualitative identification of marine diesels using a miniature Raman spectrometer," Spectrosc. Lett. vol. 40, no. 6, pp. 903-924, 2007. [DOI:10.1080/00387010701525638]
8. Y. Kurauchi, T. Yanai, N. Egashira, and K. Ohga, "Fiber-Optic Sensor with a Chitosan/Poly (vinyl alcohol) Cladding for the Determination of Ethanol in Alcoholic Beverages," Anal. Sci. vol. 10, no. 1, pp. 213-217, 1994. [DOI:10.2116/analsci.10.213]
9. M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, "Alcohol detection using carbon nanotubes acoustic and optical sensors," Appl. Phys. Lett. vol. 85, no. 12, pp. 2379-2381, 2004. [DOI:10.1063/1.1784872]
10. M. Penza, G. Cassano, P. Aversa, A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, "Carbon nanotube acoustic and optical sensors for volatile organic compound detection," Nanotechnol. vol. 16, no. 11, pp. 2536-2547, 2005. [DOI:10.1088/0957-4484/16/11/013]
11. Z. Gu, and Y. Xu, "Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor," Meas. Sci. Technol. vol. 18, no. 11, pp. 3530-3536, 2007. [DOI:10.1088/0957-0233/18/11/037]
12. Z. Gu, Y. Xu, and K. Gao, "Optical fiber long-period grating with solgel coating for gas sensor," Opt. Lett. vol. 31, no. 16, pp. 2405-2407, 2006. [DOI:10.1364/OL.31.002405]
13. C. Elosua, C. Bariain, I. R. Matias, F. J. Arregui, E. Vergara, and M. Laguna, "Optical fiber sensing devices based on organic vapor indicators towards sensor array implementation," Sens. Actuator B-Chem. vol. 137, no. 1, pp. 139-146, 2009. [DOI:10.1016/j.snb.2008.12.037]
14. G. Possetti, L. Côcco, C. Yamamoto, L. De Arruda, R. Falate, M. Muller, and J. Fabris, "Application of a long-period fibre grating-based transducer in the fuel industry," Meas. Sci. Technol. vol. 20, no. 3, pp. 034012-9, 2009. [DOI:10.1088/0957-0233/20/3/034012]
15. Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, "Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing," Opt. Express, vol. 20, no. 17, pp. 19404-19411, 2012. [DOI:10.1364/OE.20.019404]
16. M. Batumalay, Z. Harith, H. Rafaie, F. Ahmad, M. Khasanah, S. Harun, R. Nor, and H. Ahmad, "Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity," Sens. Actuator B-Chem. vol. 210, pp. 190-196, 2014. [DOI:10.1016/j.sna.2014.01.035]
17. A. Urrutia, J. Goicoechea, and F. J. Arregui, "Optical fiber sensors based on nanoparticle-embedded coatings," Sensors, vol. 2015, pp. 805053 (1-18), 2015.
18. Z. L. Wang, "Oxide nanobelts and nanowires—growth, properties and applications," J. Nanosci. Nanotechnol. vol. 8, no. 1, pp. 27-55, 2008. [DOI:10.1166/jnn.2008.N08]
19. D. C. Look, "Recent advances in ZnO materials and devices," Mater. Sci. Eng. B, vol. 80, no. 1, pp. 383-387, 2001. [DOI:10.1016/S0921-5107(00)00604-8]
20. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys. vol. 98, no. 4, pp. 041301-103, 2005. [DOI:10.1063/1.1992666]
21. A.K. Singh, Advanced x-ray techniques in research and industry, IOS Press, 2005.
22. C. Gorla, N. Emanetoglu, S. Liang, W. Mayo, Y. Lu, M. Wraback, and H. Shen, "Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition," J. Appl. Phys. vol. 85, no. 5, pp. 2595-2602, 1999. [DOI:10.1063/1.369577]
23. Y. Kong, D. Yu, B. Zhang, W. Fang, and S. Feng, "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach," Appl. Phys. Lett. vol. 78, no. 4, pp. 407-409, 2001. [DOI:10.1063/1.1342050]
24. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport," Adv. Mater. vol. 13, no. 2, pp. 113-116, 2001. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H [DOI:10.1002/1521-4095(200101)13:23.0.CO;2-H]
25. A. O. Dikovska, P. Atanasov, A. T. Andreev, B. Zafirova, E. Karakoleva, and T. Stoyanchov, "ZnO thin film on side polished optical fiber for gas sensing applications," Appl. Surf. Sci. vol. 254, no. 4, pp. 1087-1090, 2007. [DOI:10.1016/j.apsusc.2007.07.155]
26. S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci. Technol. Adv. Mater. vol. 10, pp. 013001 (1-18), 2016.
27. J.-H. Lee, C. Leu, Y.-W. Chung, and M.-H. Hon, "Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process," Nanotechnol. vol. 17, no. 17, pp. 4445-4450, 2006. [DOI:10.1088/0957-4484/17/17/027]
28. A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y. Hahn, "Growth of highly c-axis-oriented ZnO nanorods on ZnO/glass substrate: growth mechanism, structural, and optical properties," J. Phys. Chem. C, vol. 113, no. 33, pp. 14715-14720, 2009. [DOI:10.1021/jp9045098]
29. P. Pant, J. D. Budai, R. Aggarwal, R. Narayan, and J. Narayan, "Structural characterization of two-step growth of epitaxial ZnO films on sapphire substrates at low temperatures," J. Phys. D, vol. 42, no. 10, pp. 105409 (1-8), 2009.
30. A. Umar, B.-K. Kim, J.-J. Kim, and Y. Hahn, "Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation," Nanotechnol. vol. 18, no. 17, pp. 175606 (1-7), 2007.
31. H. Fallah, S. W. Harun, W. S. Mohammed, and J. Dutta, "Excitation of core modes through side coupling to multimode optical fiber by hydrothermal growth of ZnO nanorods for wide angle optical reception," J. Opt. Soc. Am. B, vol. 31, no. 9, pp. 2232-2238, 2014. [DOI:10.1364/JOSAB.31.002232]
32. B. G. S. KHijwania, "Experimental studies on the response of the fiber optic evanescent field absorption sensor," Fiber Integ. Opt. vol. 17, no. 1, pp. 63-73, 1998. [DOI:10.1080/014680398245064]
33. J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, "A silver nanoparticle-modified evanescent field optical fiber sensor for methylene blue detection," Sensors, vol. 13, no. 3, pp. 3986-3997, 2013. [DOI:10.3390/s130303986]
34. D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, "Multifunctional nanowire evanescent wave optical sensors," Adv. Mater. vol. 19, no. 1, pp. 61-66, 2007. [DOI:10.1002/adma.200601995]
35. S. Shukla, M. Rani, N. K. Sharma, and V. Sajal, "Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor utilizing platinum layer," Optik, vol. 126, no. 23, pp. 4636-4639, 2015. [DOI:10.1016/j.ijleo.2015.08.071]
36. S. Azad, E. Sadeghi, R. Parvizi, A. Mazaheri, and M. Yousefi, "Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter," Opt. Laser Technol. vol. 90, pp. 96-101, 2017. [DOI:10.1016/j.optlastec.2016.11.005]
37. S. Manivannan, A. Saranya, B. Renganathan, D. Sastikumar, G. Gobi, and K. C. Park, "Single-walled carbon nanotubes wrapped poly-methyl methacrylate fiber optic sensor for ammonia, ethanol and methanol vapors at room temperature," Sens. Actuator B-Chem. vol. 171, pp. 634-638, 2012. [DOI:10.1016/j.snb.2012.05.045]
38. G. Liu and D. Feng, "Evanescent wave analysis and experimental realization of refractive index sensor based on D-shaped plastic optical fiber," Optik, vol. 127, no. 2, pp. 690-693, 2016. [DOI:10.1016/j.ijleo.2015.10.129]
39. H. J. Kbashi, "Fabrication of submicron-diameter and taper fibers using chemical etching," J. Mater. Sci. Technol. vol. 28, no. 4, pp. 308-312, 2012. [DOI:10.1016/S1005-0302(12)60059-0]
40. S. Azad, E. Sadeghi, R. Parvizi, and A. Mazaheri, "Fast response relative humidity clad-modified multimode optical fiber sensor with hydrothermally dimension controlled ZnO nanorods," Mat. Sci. in Semicon. Proc, vol. 66, pp. 200-206, 2017.
41. M. Ogita, Y. Nagai, M. Mehta, and T. Fujinami, "Application of the adsorption effect of optical fibres for the determination of critical micelle concentration," Sens. Actuator B-Chem. vol. 64, no. 1, pp. 147-151, 2000. [DOI:10.1016/S0925-4005(99)00498-0]
42. L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," J. Phys. Chem. B, vol. 105, no. 17, pp. 3350-3352, 2001. [DOI:10.1021/jp010026s]
43. L. Dai, X. Chen, W. Wang, T. Zhou, and B. Hu, "Growth and luminescence characterization of large-scale zinc oxide nanowires," J. Phys. Condens. Matter, vol. 15, no. 13, pp. 2221-2226, 2003. [DOI:10.1088/0953-8984/15/13/308]
44. Q. Ahsanulhaq, J. Kim, N. Reddy, and Y. Hahn, "Growth mechanism and characterization of rose-like microspheres and hexagonal microdisks of ZnO grown by surfactant-free solution method," J Ind. Eng. Chem. vol. 14, no. 5, pp. 578-583, 2008. [DOI:10.1016/j.jiec.2008.09.001]
45. J. Hu and Y. Bando, "Growth and optical properties of single-crystal tubular ZnO whiskers," Appl. Phys. Lett. vol. 82, no. 9, pp. 1401-1403, 2003. [DOI:10.1063/1.1558899]
46. S. Mridha and D. Basak, "Effect of concentration of hexamethylene tetramine on the structural morphology and optical properties of ZnO microrods grown by low‐temperature solution approach," Phys. Status Solidi A, vol. 206, no. 7, pp. 1515-1519, 2009. [DOI:10.1002/pssa.200824497]
47. A. Kumar, "Performance analysis of Zinc oxide based alcohol sensors," Int. J. Appl. Sci. Eng. Res. vol. 4, no. 4, pp. 427-436, 2015.
48. M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, "An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating," Opt. Express, vol. 20, no. 8, pp. 8472-8484, 2012. [DOI:10.1364/OE.20.008472]
49. S. H. Girei, A. A. Shabaneh, H. Ngee-Lim, M. N. Hamidon, M. A. Mahdi, and M. H. Yaacob, "Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water," Opt. Rev. vol. 22, no. 3, pp. 385-392, 2015. [DOI:10.1007/s10043-015-0075-8]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.