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Abstract— CSs have been theoretically predicted and 

recently experimentally demonstrated in broad area, vertical 
cavity driven semiconductor lasers (VCSELs) slightly below 
the lasing threshold. Above threshold, the simple adiabatic 
elimination of the polarization variable is not correct, leading 
to oscillatory instabilities with a spuriously high critical 
wave-number. To achieve real insight on the complete 
dynamical problem, we study here the complete system of 
equations and find regimes where a Hopf instability, typical 
of lasers above threshold, affects the lower intensity branch of 
the homogeneous steady state, while the higher intensity 
branch is unstable due to a Turing instability. Numerical 
results obtained by direct integration of the dynamical 
equations show that writable/erasable CSs are possible in this 
regime, sitting on unstable background 

 
Keywords: cavity solutions, pattern formation, semiconductor 

lasers 

I.  INTRODUCTION 
The investigations in the field of spatial pattern 

formation in nonlinear optical systems offer an approach to 
parallel optical information processing, by encoding 
information in the transverse structure of the field [1]-[3]. 

The problem of the correlation among different parts of 
an optical pattern can be solved by generating spatial 
structures which are localized in a portion of the transverse 
plane in such a way that they are individually addressable 
and independent of one another. Cavity solitons (CSs) are 
single-peaked localized structures. They have been 
theoretically predicted [4]-[12] and experimentally 
observed in several classes of nonlinear resonators. 
Experimental observations in macroscopic cavities have 
been obtained in photorefractive resonators [13] and lasers 
with saturable absorbers [14]; similar phenomena have 
been observed in other systems with feedback [15]-[17]. 

Experimental observation of cavity solitons (CSs) in 
semiconductor micro-resonators is an important issue not 
only for fundamental physics but also for developing 
application-oriented devices. CSs have been recently 
experimentally demonstrated in broad area, vertical cavity, 
driven semiconductor lasers (VCSELs) slightly below the 
lasing threshold [18]. The device is driven by a broad area, 
coherent and stationary holding beam, and is operated 
under parametric conditions such that the output is 
basically uniform over an extended region. By injecting a 
localized laser pulse one can write a CS where the pulse 

passes and the CS persists after the pulse, thanks to the 
feedback exerted by the cavity. The CSs written in this 
way can be erased by injecting again pulses in the 
locations where they lie; in most cases, these pulses must 
be coherent and out of phase with respect to the holding 
beam. It has been observed that when the current injection 
level was approximately equal or even slightly above the 
lasing threshold, the presence of CSs was not essentially 
affected. Therefore, we decided to extend the theoretical 
prediction and numerical simulation of such devices above 
threshold [19]. 

 

 
Fig. 1 Turing and Hopf instability domains affecting the 
homogeneous steady state ES for the case of simple adiabatic 
elimination (rate-equation approximation), for a driven 
semiconductor laser above threshold: the Hopf instability 
boundary is a vertical line, corresponding to an infinite number 
of unstable wave-vectors (K is the wave-vector of the 
perturbation). The model adopted here is that of Ref. [19]. 

In the case of a homogeneously broadened two level 
laser, it is well known that the simple adiabatic elimination 
of the polarization variable is not correct, leading to 
oscillatory instabilities with a spuriously high critical wave 
number [20]-[21]. The same happens in the case of a 
semiconductor laser with injected signal, when the current 
is increased above threshold. In Fig. 1 we show the 
instability domains obtained with the rate-equation model 
of Ref. 19 when we raise the injected current above the 
laser threshold. As a new feature, a Hopf domain appears 
above threshold, but it is delimited by a vertical line: this 
means that all the wave-vectors are unstable, that is clearly 
unphysical. More refined techniques, such as centre 
manifold adiabatic elimination, have been introduced in 
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the free-running laser case [22], but they can solve only 
partially the problem: specifically, they ”work” only for 
negative values of the atomic detuning. 

To achieve real insight on the complete dynamical 
problem, we decided to study the complete system of 
equations, by adopting a phenomenological model recently 
proposed by Tartwijk and Agrawal [22]. 

Section 2 is dedicated to the description of the Agrawal 
model, Section 3 is devoted to the homogeneous stationary 
solutions and the linear stability analysis. In Section 4 we 
report the numerical results on Cavity Solitons existence 
and on/off switching. Finally, conclusions are presented in 
Section 5. 

II. THE MODEL 
We consider a broad area semiconductor VCSEL. The 

semiconductor micro-resonator is of the Fabry-Perot type, 
with a MQW structure perpendicular to the direction z of 
propagation of the radiation inside the cavity as in [19]. 

The model we adopt is a phenomenological model 
recently proposed by Tartwijk and Agrawal [22] for the 
free-running laser case. It describes a semiconductor laser 
with a macroscopic polarization, similar to a simple two 
level model (5 variables), but containing all the 
information concerning the physics of semiconductors. 
Dynamical equations can be cast in the following form: 
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∂
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Where E, P and N are the normalized electric field, 
macroscopic polarization and carrier density 
respectively,κ  is the cavity damping constant, ⊥γ is the 
polarization decay rate, and ||γ  is the carrier non-radiative 

recombination rate. 
κ
ωωθ 0−

= c  is the cavity detuning 

parameter, with 0ω  being the frequency of the holding 
field and cω  the longitudinal cavity frequency closest to 

0ω . The transverse Laplacian, defined as usual as 
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∂
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=∇⊥ , represents diffraction in Eq. (1), and 

carrier diffusion in Eq. (3), through the diffraction and 
diffusion parameters a and d, respectively. The parameter 
EI is the normalized injected field (taken real and positive 
for definiteness), j is the normalized injected current, C is 
the bistability parameter, and α  is the linewidth 
enhancement factor. 

This model is characterized by the presence of an 
”effective” damping )(NΓ  and detuning )(N∆  in the 
macroscopic polarization equation. They depend on N and 
frequency, and by adopting a phenomenological approach, 
we assume 2.12)1(2.4)()( iNNiN −+=∆+Γ , as in [24]. 

For a detailed derivation of the dynamical equations 

(especially of Eq. (2)), see [23] and [24]. 
It is important to notice that if the polarization variable 

is adiabatically eliminated and its stationary value PS is 
substituted in Eqs. (1) and (3), one gets exactly the model 
of Ref. [19]. 

III. LINEAR STABILITY ANALYSIS OF THE 
HOMOGENEOUS STEADY STATE 

We now approach the complete model described by the 
three space-time dependent PDEs (1), (2), and (3). The 
homogeneous solution ( ), ,S S SE P N  is obtained, as usual, 
by setting equal to zero all the temporal and spatial 
derivatives. We obtain: 
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Fig. 2 (a) Homogeneous stationary state: intracavity field 
amplitude |ES| as a function of the injected holding beam 
amplitude EI . The solid line portion of the S-curve is stable, the 
dashed line portion is unstable for Turing instability, the dotted 
line portion is unstable for Hopf instability. Symbols correspond 
to maximum intensity of patterns obtained by numerical 
simulations, displayed in the squares (honeycombs and CSs in 
this case). In (b) the Hopf and Turing domains affecting the 
stationary state are displayed in the plane (|ES|, K), where k  is 
the wave-vector of the perturbation. The values of |ES| for which 
there exist values of K inside the domains are unstable. 
Parameters are: 0.45, 2, 5C θ α= = − =  

1.222,j = 0.052, 0.0001d γ γ ⊥= = , and 0.01κ γ ⊥ =  

In order to determine the threshold value thj  and the 
laser frequency in absence of the injected field (free 
running regime) and in the plane-wave approximation we 
must set 0=IE  in the stationary equations of the model 
and consider the point where the nontrivial stationary 
solutions gives 0=SE . We obtain: 

,
2
1
C

jth =  (7) 

.αθ −=  (8) 
The calculation of SE  vs. IE  curve is obtained by 
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varying SE  as a free parameter. It turns out that, 
depending on the choice of the parameters, it can be S-
shaped, as in the case displayed in Fig. 2 (a). 

We then study the instabilities of the homogeneous 
steady state, which give rise either to another 
homogeneous state (plane-wave instability, PWI) or to a 
spatially modulated pattern (modulational instability, MI). 
To this aim, we perform the usual linear stability analysis 
of the system, by studying the response of the system to 
small spatially modulated fluctuations around the 
homogeneous solution 

We obtain a fifth-order characteristic equation because 
we have five independent variables, that are the electric 
field and material polarization, their complex conjugates, 
and the carrier density. The characteristic equation reads: 

,001
2

2
3

3
4

4
5 =+++++ aaaaa λλλλλ  (9) 
where the coefficients 4,3,2,1,0, =iai depend on the 

system parameters αθγγκ ,,,, || ⊥  Γ∆,,,,, dECj I and on 

the modulus square 2K of the transverse wave-vector. 
Let us fix all the values of the parameters with the 

exception of IE ; instead of IE  , it is more convenient to 

consider the stationary value SE , because IE  is a single-

valued function of SE , whereas SE  is, in general, a 

multi-valued function of IE  . In this way, the coefficients 
)4...,,1,0( =iai are functions of the transverse wave-vector 

K  and of SE . We want to find the boundaries of the 

stability domains in the plane ( )KES , . 
The boundary of the Turing domain, corresponding to a 

stationary instability (real eigenvalue), is assigned by the 
condition 0=λ  with λ  real, which is in turn equivalent 
to 00 =a . 

The boundary of the Hopf domain is assigned by the 
condition υλ i= . By substituting this expression in the 
characteristic Eq. (9) and after some simple algebra, we 
obtain the following stability boundary: 
( ) ( )( ) .03021234

2
014 =−−+−− aaaaaaaaaa  (10) 

We explored different parametric regimes and found 
that the Hopf instability, typical of lasers above threshold, 
affects only the lower intensity branch of the homogeneous 
steady state, while the higher intensity branch is affected 
by a Turing instability, as it is shown in Fig. 2. 

Parameters were chosen according to our previous 
studies on the same kind of micro-resonators, below 
threshold. As in [19] we set ,5,2,45 =−== αµC  and 

052.0=d . The injected current is considered around 10% 
above threshold, that in this case is 111.1=thj . As for the 
decay rates, typical values for semiconductors are 

fs1001 =−
⊥γ  for the polarization decay time, ns11

|| =−γ  for 
carrier non-radiative recombination time and ps10=κ  for 

the cavity photon lifetime. We scale time in unit of 1−
⊥γ and 

the spatial variables by the diffraction length a , with 
ma µ20= . 

The Hopf instability is characterized by a very high (but 

finite) critical wave-number (see Fig. 2 (b)). It is worth 
noting that this critical wave-number has the same value as 
that destabilizing the trivial solution for the free-running 
laser case (no injection). In Fig. 3 we show the Hopf 
instability domain of the trivial homogeneous solution for 

0=IE , in the plane ( )Kj, , where j is the injected current. 
Two thresholds can be individuated: one is the plane-wave 
threshold 111.1=thj , or the laser threshold in absence of 
diffraction, and it is given by the intersection with the x -
axis. The other one, that is lower for this parameter choice 
( )843.02 =thj , is characterized by a critical wave-vector 

CK  different from zero ( )6.26=CK , corresponding to an 
off-axis emission (traveling wave, TW) [20]-[21]. 

 

 
Fig. 3 Hopf instability domain for the case of a free-running 
laser, plotted in the plane (j,K), where j is the normalized injected 
current. In this case no field is injected, and the emitted 
frequency ω0 is such that αθ −= . The other parameters are as in 
Fig. 2. Two different thresholds can be individuated: the plane–
wave threshold 111.1=thj , that is the laser threshold in absence 
of diffraction (it corresponds to 0=K ), and the TW threshold 
[20] 843.02 −=thj , that is lower for this parameter choice, 

corresponding to 6.26−=CK . 

Coming back to the case with injected signal, we 
decided to reduce the injected current below the plane-
wave threshold indicated by Eq. (7), and found that the 
Hopf domain survives (without any intersection with the x-
axis, but keeping the same critical wave-vector 6.26=CK ) 
until the other threshold 2thj  is reached (see Fig. 4). 

It is worth noting that this is a feature related to the 
consideration of the polarization dynamics: in the rate 
equation approximation no Hopf instability was found 
below the plane-wave threshold thj . The rate equation 
approximation fails therefore to describe correctly the 
system dynamics, when diffraction is taken into account. 
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Fig. 4 Hopf instability domains for different values of the 
injected current j ranging from 222.1=j j (the largest domain) 
to 845.0=j  (the smallest domain): the value of the critical 
wave-vector 6.26−=CK remains fixed. The Hopf domain 

vanishes for 843.02 ≈≤ thjj . The other parameters are as in 
Fig. 2. 

The critical wave-number characterizing the Hopf 
instability is strongly dependent on the ratio between the 
temporal parameters. In Fig. 5 we show the Hopf domain 
for three different values of the ratios ⊥γγ ||  and ⊥γκ . 

The instability threshold for SE on the right remains 
fixed, but the value of the critical wave-vector K becomes 
smaller and smaller if the polarization dynamics is 
artificially slowed down. The homogeneous steady state 
and the Turing domain remain unchanged. 

 

 
Fig. 5 Hopf instability domains for different values of ⊥γγ ||  

and ⊥γκ : the value of SE  for which the steady state becomes 

unstable remains fixed, but the critical wave-vector KC becomes 
smaller and smaller if the polarization decay rate γ⊥ is decreased 
( ⊥γ is indicated as γp in the figure). The other parameters are as 
in Fig. 2. 

IV. NUMERICAL RESULTS 
We have performed the numerical integration of Eqs. 

(1)-(3) by using a split-step method with periodic 
boundary conditions. This method consists in separating 
the algebraic and the Laplacian terms in the right-hand side 
of Eqs. (1)-(3): the algebraic part is integrated using a 
Runge-Kutta algorithm, while for the Laplacian operator a 
2–D FFT routine is adopted [25]. This implies that the 

number of points for each side of the grid must be a power 
of 2, and we mostly assumed a 64 × 64 grid. 

The numerical integration of the complete problem is 
very demanding for the computational time required, 
because of the three very different time-scales involved, 
spanning over 4 orders of magnitude. Furthermore, for 
realistic values of the temporal parameters, the critical 
spatial wave-vector of the Hopf instability is very large 
( )6.26≈CK , thus requiring a small space–step (that is, the 
distance between two neighboring points in the grid) to be 
able to resolve the spatial scale of the patterns. 

Moreover, the algorithm converges only if the relation 

4

2st δδ ≤  holds, where tδ  is the time–step and sδ  is the 

space–step, used in the numerical simulations. In order to 
ensure proper stability and convergence of the algorithm, 
we chose a time–step 210−≈tδ  and a space–step sδ  of 
0.2–0.3. 

Extended numerical results obtained by direct 
integration of the dynamical equations (1)-(3) show that 
stable CSs are possible in this regime, even if they sit on 
an unstable background (see Fig. 6). They can be obtained 
starting from a patterned initial condition (as the 
honeycombs in Fig. 2 (a)), by reducing the input field 
amplitude. 

 

 
Fig. 6 Intracavity field amplitude profile in the case of one (a) or 
several (b) CSs: they sit on unstable background. Parameters are 
as in Fig. 2. 

The soliton peak intensity turns out to be almost 
constant, while the background is rapidly oscillating (see 
Fig. 7). 

 

 
Fig. 7 Temporal behavior of field amplitude (a) and phase (b) of 
the background and CS peak. 

Despite the instability affecting the background, it turns 
out to be perfectly possible to write and erase CSs in the 
usual manner. A writing beam (WB) is injected into the 
cavity, with the same phase as the holding field, for a 
certain time (ranging from half to several nanoseconds), 
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then it is removed. The CS grows up and remains fixed at 
the location where the WB was injected. There is a good 
tolerance with respect to the WB phase: it is possible to 
excite CSs with phase ranging from 0 to almost 2π . To 
erase CSs, we proceed in the usual way: the WB is injected 
again at the CS position, but with an opposite phase with 
respect to the holding beam. The CS disappears and it 
remains off also when the erasing beam is removed. 

 

V. CONCLUSION 
We studied here the transverse dynamics of a driven 

broad-area VCSEL above threshold, where dynamical 
instabilities take place and the rate-equation approximation 
fails to correctly describe the system dynamics in presence 
of diffraction. We therefore considered also the material 
polarization dynamics, by using a model introduced by 
Agrawal, characterized by 5 dynamical equations, similar 
to a simple two level model but containing all the 
information concerning the physics of semiconductors. 

We studied the homogeneous stationary state and their 
instabilities, both stationary (Turing) and dynamical 
(Hopf). We found some parametric regimes where the 
homogeneous steady state is bistable, with the lower 
branch unstable for a Hopf instability, and the upper 
branch unstable for Turing instability. 

When the dynamical equations are integrated 
numerically, patterns can be obtained for higher input field 
intensities, where the steady state is affected by a Turing 
instability. Cavity solitons are also possible, but they are 
sitting on a background that is dynamically unstable. CSs 
intensity and phase are basically constant, while the 
background is rapidly oscillating. 

Despite the instability affecting the background, CSs 
can be written and erased in the usual way, by means of 
writing and erasing beams. 

Therefore CSs result to be robust structure and possible 
candidates for optical information treatment also in 
VCSELS above threshold, where a larger power of 
emission is available. 
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