Volume 12, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 12, No 1, Winter-Spring 2018)                   IJOP 2018, 12(1): 13-20 | Back to browse issues page

XML Print

PhD. Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University,
Abstract:   (699 Views)

In this paper, tetragonal chalcopyrite (CIGS) Cu(InxGa1-x)Se2 with x=0, 0.5, 0.8, 1 are synthesized by heating-up method. These nanoparticle structures differ in morphology and absorption properties due to the synthesis temperatures of 250, 255, 260, 265, 270 and 280 ºC, and gallium molar ratio over the total gallium and indium contents. These features are studied using scanning electron microscope, X-ray diffraction and absorption spectroscopy in visible, ultra-violet and near-infrared wavelengths. Results indicate that by increasing gallium content, absorption edge rises toward the visible light. Any modification in the absorption edge changes the band gap and as a result the energy gap and the absorption of cell increases considerably. Also in the heating-up method, increasing the reaction temperature improves nanoparticles crystallites. This leads the absorption improvement and higher cells efficiency. Produced nanoparticles are spherical shape with are varying the diameter around 30-80 nm.

Full-Text [PDF 487 kb]   (136 Downloads)    
Type of Study: Research | Subject: General
Received: 2016/12/21 | Revised: 2017/03/11 | Accepted: 2017/04/4 | Published: 2017/10/28

1. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, "19•9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81•2% fill factor," Prog. Photovolt Res. Appl. Vol. 16, pp. 235–239, 2008. [DOI:10.1002/pip.822]
2. M.A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 37)," Prog. Photovolt, Res. Appl. Vol. 19, pp. 84–92, 2011. [DOI:10.1002/pip.1088]
3. C. Ming-Yi, C. Shu-Hao, C. Chia-Yu, Y. Fang-Wei, and T. Hsing-Yu, J., "Quaternary CuIn(S1−xSex)2 Nanocrystals: Facile Heating-Up Synthesis, Band Gap Tuning, and Gram-Scale Production," Phys. Chem. C, Vol. 115, pp. 1592–1599, 2011.
4. C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot, and A.N. Tiwari, "Non‐vacuum methods for formation of Cu (In, Ga)(Se, S)2 thin film photovoltaic absorbers," Prog. Photovoltaics Res. Appl. Vol. 18, pp. 434–452, 2010. [DOI:10.1002/pip.914]
5. S. Ahn, K. Kym, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn, K. Yoon, "CuInSe2 (CIS) Thin Films Prepared from Amorphous Cu–In–Se Nanoparticle Precursors for Solar Cell Application," ACS Appl. Mater. Interfaces, Vol. 4, pp. 1530–1536, 2012. [DOI:10.1021/am201755q]
6. L. Li, N. Coates, and D. Moses, "Solution-Processed Inorganic Solar Cell Based on in Situ Synthesis and Film Deposition of CuInS2 Nanocrystals," Am J. Chem. Soc. Vol. 132, pp. 22–23, 2010. [DOI:10.1021/ja908371f]
7. M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F. Barbara, and B.A. Korgel, "Synthesis of CulnS2, CulnSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal "inks" for printable photovoltaics" Am, Chem. Soc. Vol. 130, pp. 16770-7, 2008. [DOI:10.1021/ja805845q]
8. Q. Guo, G.M. Ford, H.W. Hillhouse, and R. Agrawal, "Sulfide Nanocrystal Inks for Dense Cu (In,Ga)(S,Se)2 Absorber Films and Their Photovoltaic Performance," Nano Lett. Vol. 9, pp. 3060-5, 2009. [DOI:10.1021/nl901538w]
9. M. Dehghani, A. Behjat, F. Tajabadi and N. Taghavinia, "Totally solution-processed CuInS2 solar cells based on chloride inks: reduced metastable phases and improved current density," J. Phys. D: Appl. Phys. Vol. 48, pp. 115304 (1-8), 2015.
10. S.J. Ahn, J.H. Kim, Y.G. Chun, and K.H. Yoon, "Nucleation and growth of Cu (In, Ga) Se2 nanoparticles in low temperature colloidal process," Thin Solid Films, Vol. 515, pp. 4036–4040, 2007. [DOI:10.1016/j.tsf.2006.10.102]
11. V.K. Kapur, A. Ansal, B.P. Le, and O.I. Asensio, "Non-vacuum processing of CuIn1 xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks," Thin Solid Films, Vol. 431, pp 53–57, 2003. [DOI:10.1016/S0040-6090(03)00253-0]
12. V.K. Kapur, B.M. Basol, C.R. Leidholm, and R. Roe, "Oxide-based method of making compound semiconductor films and making related electronic devices," US Patent, Vol. 127, pp. 202, 2000.
13. M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodaba Lapur, P.F. Barbara, and B.A. Korgel, "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics," Chem. J. A. Soc. Vol. 130, pp. 16770–16777, 2008. [DOI:10.1021/ja805845q]
14. J.P. Xiao, Y. Xie, R. Tang, and Y.T. Qian, "Synthesis and characterization of ternary CuInS2 nanorods via a hydrothermal route," J. Solid State Chem. Vol. 161, pp. 179-183, 2001. [DOI:10.1006/jssc.2001.9247]
15. S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, and A.F. Hepp, "Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor," J. Phys. Chem. B, Vol. 108, pp. 12429–12435, 2004. [DOI:10.1021/jp049107p]
16. J.J. Nairn, P.J. Shapiro, B. Twamley, T. Pounds, R. Wandruszka, T.R. Fletcher, W. Williams, and M.G. Norton, "Preparation of Ultrafine Chalcopyrite Nanoparticles via the Photochemical Decomposition of Molecular Single-Source Precursors," Nano Lett. Vol. 6, pp. 1218-23, 2006. [DOI:10.1021/nl060661f]
17. M.A. Malik, P. O'Brien, and N. Revaprasadu, "A Novel Route for the Preparation of CuSe and CuInSe2 Nanoparticles," Adv. Mater. Vol. 11, pp. 1441–1444, 1999. https://doi.org/10.1002/(SICI)1521-4095(199912)11:17<1441::AID-ADMA1441>3.0.CO;2-Z [DOI:10.1002/(SICI)1521-4095(199912)11:173.0.CO;2-Z]
18. H.Z. Zhong, Y.C. Li, M.F. Ye, Y. Zhu, Z. Zhou, C.H. Yang, and Y.F. Li, "A new facile route to synthesize Chalcopyrite CuInSe2 Nanocrystals in Non-coordinating Solvent," Nanotechnol. Vol. 18, pp. 025602, 2007. [DOI:10.1088/0957-4484/18/2/025602]
19. J.J. Qiu, Z.G. Jin, W.B. Wu, and L. Xiao, "Characterization of CuInS2 thin films prepared by ion layer gas reaction method," Thin Solid Films, Vol. 510, pp. 1-5, 2006. [DOI:10.1016/j.tsf.2005.03.047]
20. J. Der Wu, L.T. Wang, and C. Gau, "Synthesis of CuInGaSe2 nanoparticles by modified polyol route," Solar Energy Materials and Solar Cells, Vol. 98, pp. 404–408, 2012. [DOI:10.1016/j.solmat.2011.11.044]
21. J. Tang, S. Hinds, S.O. Kelley, and E.H. Sargent, "Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles," Chem. Mater. Vol. 20, pp. 6906–6910, 2008. [DOI:10.1021/cm801655w]