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ABSTRACT— In this paper, a Y-shaped power
splitter based on a two dimensional photonic
crystal (PhC) for TE modes is designed and
optimized. A triangular lattice of air holes is
used for Y-shaped power divider. For analyzing
these structures, plane wave expansion (PWE)
and finite difference time domain (FDTD)
methods are used. The simulation results show
that more than 98% of the input power is
transmitted to the outputs and the structure has
just less than 2% reflected power. According to
the simulation results this structure is suitable
for high bandwidth optical integrated circuit at
the 1550 nm wavelength.

KEYWORDS: power splitter, photonic crystal,
FDTD, Y-junction, optical power divider.

I.INTRODUCTION

One of the new topics in the field of
electronics and telecommunications is the
development of optical technology for high
bandwidth devices. Due to the rapid expansion
of technology, the need to transfer more data
has become crucial. Nowadays, one of the
most important media in data transfer is the
optical fiber. It is the subject of industrial
research around the world. Until now, good
progress has been achieved in this area and
every day their quality is improved. Photonic
crystal (PhC) technology is one of the new
techniques in the manufacture of optical fibers.
They are compatible with standard optical
communication technologies [1], [2] and with
electronic  integrated circuit fabrication
process. Today, due to the advances made in
the field of telecommunications, information
sharing with high speed is essential. Electronic
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systems are not able to meet these
requirements anymore. The wide bandwidth of
optic fibers and optical communication
networks made optical devices more attractive
for researchers. Among the structures used to
design optical devices are photonic crystals.
Photonic crystals exhibit a special frequency
range [3], known as optical bandgap, where no
electromagnetic wave in this frequency range
is allowed to propagate in the crystal structure
[4]-[7]. Tt gives them unique characteristics
which can be employed for designing many
optical devices

The easiest way to create a PhC is to create
holes in a dielectric slab. If a row of holes is
removed, a waveguide can be created and as a
result a local mode may be able to propagate
inside. Due to the existence of the bandgap,
light can only move along the path of holes
that are removed. Therefore, it acts as an
optical waveguide and light emission is
limited to a specific path. This optical
waveguide has considerable potential for use
in integrated optical devices, including: optical
filters, optical switches, bends, multiplexers,
power splitters, etc. Power splitters are among
the main components in optical
communication systems that are used for many
applications. Power splitters have different
types such as directional-coupler-based [8], Y-
shaped [9] and T-shaped [10]. Recently,
photonic crystals have been used to design
power splitters in optical integrated circuits
[11]. Power splitters can be designed with
different number of outputs. The input optical
signal of the splitter, due to its design is
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divided between the outputs, but some of that
power may return to the input as a reflected
power. Many have tried to optimize the
structures of PhC power splitters. Among the
most recent ones, a topology has been
proposed by Nozhat and Granpayeh. It
consists of a Y-shaped line defect. They used
an effective numerical method based on FDTD
scheme to obtain and improve the parameters
of their structure [12]. Another Y-shaped
power splitter was investigated by Gaffari et
al. [13]. According to it, bi-periodic structures
can show much better performances compared
to their conventional counterparts.

Yang succeeded to design a Y-shaped power
splitter with ultra-low loss outputs and a 162
nm bandwidth. The design is suitable for TE-
polarized light and is designed based on a PhC
slab in a silicon-on-insulator (SOI) material
[14]. A polarization power splitter is designed
by Li that has two outputs, one of its outputs
was for TE and another output for TM
polarization which can be used for high speed
applications [15]. Then, Lin designed a new
Y-type polarization power splitter in a square-
lattice PhC with a wide wavelength and low
loss [16]. After that, Huang presented another
structure for polarization beam splitter. He
improved the problems of polarization error
caused by the insufficient performance of
extinction ratio in the process of transmission
[17]. In the year 2012, Badaoui presented a
new Y-shaped power splitter topology for TE
polarized light. It used InP/GalnAsP/InP with
a triangular array of holes. The total power
transmission of both output ports was about
75% [18]. Another design for Y-junction
splitter has claimed to overcome some of the
difficulties such as mode mismatch, bandwidth
and Dbending region transmission and
challenges. This structure can be used in
communication systems and has the ability to
be integrated [19]. One photonic crystal
structure for wide-band Y-splitter for TE
modes with a triangular lattice of air holes
etched in a GaAs slab also is presented in [20].
It has less complexity and about 100nm
bandwidth.
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PhC power splitters are designed not only with
two output ports [21]-[23] but also with three
[25], [26], four [27]-[29] and even eight output
ports [30]. A Y-shaped beam splitter has been
designed using composite where the power
ratio of each output can be adjusted by
changing the location of the input beam [31].
In the year 2013, a slow-light PhC Y-junction
was presented that which had the potential to
be used also as a Mach-Zehnder interferometer
[32]. After that in 2014, a PhC power splitter
was designed that consisted of two parallel
coupled-cavity ~ waveguides  placed in
proximity. That structure can be used for
splitting  high-speed optical signals in
integrated optical circuits [33]. In this paper, a
Y-shaped structure is presented. It provides a
high bandwidth and constant power ratio. The
rest of the paper is organized as follows: In
Section 2 we describe parameters and
simulation methods used in this paper. Section
3 explains the Y-shaped design proposed to
obtain more beam splitting efficiency and
optimization method for obtaining different
powers in the outputs. Section 4 presents the
simulation results regarding the proposed
structures, and the final section is devoted to
the conclusions.

1. NUMERICAL METHOD

In this paper, GaAs is used as the substrate.
The refractive index of GaAs is about 3.4 for
wavelengths around 1550 nm. In our designs a
PhC slab with a triangular pattern of circular
holes is used for Y-shaped power splitter
structures. Assuming that “a” is the lattice
constant of the structure. The radius of the
holes in this structure is 0.3a. The slab
thickness of triangular pattern is about 0.6a
and the PhC is assumed to have an air cladding
[20]. Finite Difference Time Domain (FDTD)
method and Plane Wave Expansion (PWE) are
used to analyze the structures. A bandgap, in
two dimensional slabs with finite height, is
defined by the range of frequencies in which
no “guided mode” exists. The bandgap will not
be a complete bandgap, because there are
leaky modes at those frequencies.
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Fig. 1. Simulated photonic band structure of 2D
triangular lattice PhCs.

The band diagram, for the PhC slab used in
this paper is shown in Fig. 1. As seen this type
of PhC has a bandgap for TE-like modes. This
diagram is obtained by two dimensional plane
wave expansion (PWE) method using an
effective index equal to 2.76.

111. DESCRIPTION OF Y-SHAPED POWER
SPLITTER

Scientists have investigated photonic crystals
consisting of dielectric rods in air and/or array
of holes in a dielectric slab. They studied on
T-junctions, Y-junctions and waveguide
branches [34]-[36]. The rod-type PhC has a
poor  vertical  confinement and @ its
implementation for most of optical devices is
difficult. In slab waveguide structures, the air
holes are etched into a dielectric such as
silicon [37], GaAs/AlGaAs hetero-structure
[38] and a semiconductor membrane [39]-[41].

The problem of creating holes in dielectric is
that the single-defect PhC waveguide becomes
multi-mode [41]-[43]. It results in mode-
mixing problem in junction of waveguides. It
creates a mismatch in the fields between input
and output and makes larger reflections. While
the researchers have studied about bends and
straight waveguides, the junction problems
have only recently received attention [44]-
[47]. The Y-splitter design consists of three
waveguides which are connected together.
Conventional ~ Y-splitters  have  strong
reflections and a narrow bandwidth. Because
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of strong reflection, the input power that is
transmitted to the output ports is only 20%
[48]. An alternate design based on a triple line
defect waveguide has designed by [44]. They
presented a structure that has 25nm bandwidth
and 45% power transmission by adding an
additional hole at the junction.

IV. PROPOSED STRUCTURE AND
SIMULATION RESULTS

The PhC Y-junction structure is defined by an
array of air holes in substrate with refractive
index of 3.4 (GaAs). The regular holes are
placed in a triangular lattice and have a radius
r=0.3a, where lattice constant a=430nm. The
PhC Y-junction is formed by the intersection
of three PhC waveguides at 120° as shown in
Fig. 2. The output channels of Y splitter are
parallel to the input channel and have a 60°
bend.
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Fig. 2. The proposed Y-shaped photonic crystal
topology for TE polarized incident light. The lattice
defects have a radius equal to 0.3a, while the radii
of the labeled holes are: r=0.12a, r,=0.31a,
r~0.4a, r.~=0.19a, and r,~0.11a.

The 120° junction and 60° bend represent
severe discontinuities in the PhC waveguides
and are potential regions in which the single-
mode operation might suffer from large
transmission losses. Therefore, the
discontinuities in these regions are carefully
designed. The band diagram of the W1
waveguide used in Y-shaped power splitter is
shown in Fig. 3. The radius of the slab holes is
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0.3a. The radius of specified holes is:
7=0.12a, r=0.31a, r~0.4a, re~0.19a, and
7#=0.11a. This structure has a bandwidth more
than 100nm.
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Fig. 3. The band diagram of the W1 waveguide
used in this paper.
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Fig. 4. The electrical field (Ey) distribution of the
power splitter topology depicted in Fig. 2. The

input light wavelength is 1550nm.

After simulation of the proposed structure, the
transmitted power and reflected power is
obtained. The bandwidth of the designed
power splitter is more than 85 nm. In addition,
its transmission is about 98%. The power
distribution in  outputs and  power
transmittance are shown in Fig. 4 and Fig. 5
respectively.
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Fig. 5. The normalized transmission (summation of two
output arms) and reflection for the proposed Y-splitter
derived by FDTD method.
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Fig. 6: Schematic model for a PhC Y-junction in a
hexagonal lattice of circular holes embedded in a
dielectric substrate. The radius of holes are equal to
0.3a.

Using the coupled mode theory approach, A
PhC Y-junction can be modelled as a resonator
which is coupled to three waveguides [14]. As
shown in Fig. 6, one of which is the input and
the other two are output waveguides. The
amplitude decay rate from the central
resonator to each output is assumed to be Ti.
Assuming that “A” is the amplitude of
resonance at the central cavity, Yang et al.
showed that the Y-junction can be treated as a
resonator that couples with the mentioned
ports, bases on the following equations:
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Where S+ and S.i are the amplitudes of the
waves travelling in the positive and negative
direction of each waveguide. It is shown in
[17] that using the coupled mode theory the
reflection coefficient can be obtained as (3).

2
oma)er- -
R: Tl ]Z:Z ;3 (3)
](a)—a)o)+z_1+z_2+z_3

Where, ®o is the resonance frequency. A
simple glance at the reflection formula shows
that if equation (4) is satisfied, the reflection
will become zero at ® = wo.

i )

If the Y-junction is three fold symmetric, like
the normal junction shown in Fig., then due to
symmetry t1=12=13. Therefore according to (4)
the reflection will not be equal to zero. The
FDTD simulation of a normal and symmetrical
PhC Y-junction confirms this fact [14]. As a
matter of fact to enhance the transmittance, in
our proposed structure additional holes are
added to the junction area and the radii of
some holes are increased. This can increase
the volume of the cavity and make the cavity
mode resonant with the waveguide modes.
However, since we want the output ports to
have the same transmittance the junction
should be symmetric along the horizontal axis.
We already know that due to symmetry =rt3;
therefore the mentioned condition may be
simplified as (5):

T, =—7,=—T 5
57275 )
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It means that the in order to minimize the
reflection, the decay rate of resonance to the
input ports should be twice the decay rate of
resonance to the output ports. In a simple Y-
junction all of the three decay rate time
constants are equal. The tapered structure of
the holes inserted in our proposed design,
improves the coupling strength between the
resonator and the input waveguide. It results in
the reduction of 71. If the tapering is designed
so that 71 is decreased to half 72, then the zero
reflection  condition can be satisfied.
Numerical optimization is used to design such
a tapering. Discontinuities in the path of a
waveguide are the source of reflection. When
the transmitted signal from the input
waveguide meets the branch section, many
evanescent modes are excited. A common
method to reduce backward reflection and
enhance the impedance matching is to use
tapering or adiabatic structures. In other words
in structures with gradual change, less
reflection are usually observed. Hence for the
Y-branch and bends used in this design
tapered structures are used. In order to find the
optimum value for rs, rs, 7e, ra. and re an
optimization algorithm is used.

Many heuristic algorithms such as genetic
algorithm (GA), artificial bee colony (ABC),
simulated annealing (SA), particle swarm
optimization (PSO) etc. have been proposed in
the literature which can be wused for
optimization problems. These algorithms use
pseudo random methods to find the proper
input array which minimizes a predefined cost
function. In our structure the goal is to both
maximize the bandwidth and transmission at
the same time. In order to calculate the
transmittance FDTD method has to be used.
The main drawback of using FDTD is that it is
very time consuming. Hence it makes using
the mentioned optimization algorithms which
use a large initial population very time
consuming and practically inefficient. The
process of calculating the cost function is so
time consuming that we prefer to use the
gradient-based optimization methods instead.
The problem associated with these methods is
that they might be trapped in the local minima.
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To alleviate the mentioned problem, instead of
using a single initial point for optimization, a
random set of initial values can be used. The
optimization process used in this paper is as
follows: As there are only five parameters,
complicated optimization methods are not
needed. We first guess some initial values for
these parameters which is a 1x5 array, named
VAR. Then the first parameter is swept with a
variable step and the transmittance is
calculated for each value while the other are
kept constant. When the optimum value is
found, the optimum value for ra is replaced in
VAR(1) and we sweep the second variable to
find the best value for VAR(2). These process
goes on until we reach VAR(S). Then it is
started from the beginning once again. The
process is repeated until VAR(1), VAR(2),...,
VAR(5) remain constant. In order to minimize
the change of being trapped in local minima,
the process is repeated once again from a
different starting point, i.e. another initial
guess for input variables is made. This process
is repeated until the best results are observed.
The optimization flowchart is summarized in
Fig. 7. To have a better understanding for the
improvement of transmittance in our proposed
power splitter, we may divide the structure to a
PhC bend and a PhC Y-branch.
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Terminate i
NO Redraw PhC Find the

YES Junction

Transmittance
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- Using

Usmg FDTD

VAR(1:5) i
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Sweep VAR(i) i=it+1 the Cost
Keep the Others € clse Function

Constant i=0
N=N-+1

Fig. 7: The optimization flow chart.

As shown in the band diagram of the W1
waveguide in Fig. 3, the W1 waveguide which is
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formed by removing a row of defects supports two
guiding modes. The higher frequency mode has odd
parity and the lower one has odd parity. The odd
mode has a bandwidth at the normalized frequency
range of 0.265 (a/A) to 0.287 (a/M).
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Fig. 8. (a) A simple Y-branch in a 2D hexagonal
lattice of circular holes embedded in GaAs (b)
Electrical field (Ey) distribution of a simple PhC Y-
branch for an input wavelength of 1550nm..

As shown in Fig. 8, the incident wave has a
Gaussian mode profile. As said before, when
the input waveguide and output waveguides
meet a resonator is formed. A simple Y-
Branch may be formed at the intersection of
three W1 waveguides as shown in Fig. 8(a).
When the input signal reaches the intersection,
it starts resonating. Figure 8(b) shows the
vertical component of electrical field (Ey)
when the input normalized frequency is equal
to 0.275(a/L). As seen in Fig. 8(b) the incident
wave has an even parity along the axis labeled
“k”. The resonator acts as a feed for output
waveguides. If the resonator is designed in
such a manner that the mode profile along the
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axis is also Gaussian a good coupling will
occur. We have depicted the resonance at the
“I” axis for the simple Y-branch. As seen the
mode profile is not even. However it can be
considered as the superposition of an odd
mode and an even mode. For the normalized
frequency of 0.275 (a/A), the W1 waveguide
only supports the even modes. While the
resonance is not purely even. Therefore poor
coupling is expected. To have a better
understanding of a good resonance profile, a
hypothetical model is shown in Fig 9(a).
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(a) (b)
Fig. 9. The ideal resonance of a hypothetical Y-
branch (b) The resonance profile obtained for the
optimized Y-branch proposed in this paper for an
input wavelength of 1550nm.

The profile of electrical field should be
symmetric along the depicted axis to provide
good coupling between the input and output
waveguides. The resonance profile of our
structure is also shown in Fig. 9(b). The three-
fold resonance symmetry obtained for these Y-
branch guaranties a good coupling. To explain
the existence of reflection at the bends, the
bending area can be assumed as another
waveguide whose supercell is shown in the top
section of Fig. 10. It can be assumed that the
bend is comprised of two W1 waveguides
which are coupled to this waveguide. PWE
method has been used to find the band diagram
regarding this transition section. The band
diagram obtained in this case is superimposed
on the original band diagram. As seen the
group velocity of this modes are different.
Hence a reflection is expected. It can be shown
that adding re and r4 holes reduce the effective
index of the transition section which leads to
shifting these modes up. As a result better
coupling is observed.
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Fig. 10: The band diagram of a W1 waveguide and
the band diagram of the transition section of a 60

degree bend.

TABLE 1 COMPARISON OF THE PROPOSED STRUCTURE WITH THE
STRUCTURES PROPOSED IN THE LITERATURE

Ref. Year Bandwidth ~ Transmission
[20] 2011 105 nm 95 %
[25] 2014 11 nm 96.3 %
[26] 2014 43 nm 99 %
[27] 2014 70 nm 90 %
[32] 2014 30 nm 95 %
[28] 2014 111 nm 96 %
[29] 2015 10 nm 95 %
[30] 2015 35 nm 86 %
This work 2016 85 nm 98 %

As it can be seen in Table 1 the structure
proposed in this paper can provide an average
98% transmission over a 85nm bandwidth
which is more than all except [20] and [28].
Although the bandwidth is less but it can
provide better transmission ratio than [20] and
[28], both of which are simulation results.

V. CONCLUSION

A PhC Y-splitter for TE modes was proposed
in this paper. FDTD method was used to
analyze the proposed structure. Simulation
results confirm that in comparison to the most
recent structures reported in literature, the
proposed Y-splitter provides an improved
transmittance and bandwidth, while it has a
much simpler design. For a bandwidth more
than 85 nm the transmitted power is over than
98% and less than 2% of power is reflected to
the input.
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