Volume 12, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 12, No 1, Winter-Spring 2018)                   IJOP 2018, 12(1): 69-78 | Back to browse issues page

XML Print

MSc Shahid Rajaee Teacher Training University
Abstract:   (609 Views)

In this paper, we report the numerical analysis of a photonic crystal fiber (PCF) for generating an efficient supercontinuum medium. For our computational studies, the core of the proposed structure is made up of As2Se3 and the cladding structure consists of an inner ring of holes made up As2Se3 and four outer rings of air holes in MgF2. The proposed structure provides excellent nonlinear coefficient and dispersion optimization. For the analysis, finite difference frequency domain (FDFD) method is employed. Because of the high nonlinear refractive index of the chalcogenide glass and high difference between the refractive index of the core and the cladding, a small effective mode area of 0.68 μm2 is obtained. The nonlinear coefficient is 14.98 W-1m-1 at the wavelength of 1.8 μm. Dispersion is almost flat from 1.6 μm up to 2.8 μm. The supercontinuum spectrum calculated ranges from 1 μm to 6 μm. The presented structure is appropriate for medical imaging, optical coherence tomography and optical communications

Full-Text [PDF 535 kb]   (144 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/07/1 | Revised: 2016/10/6 | Accepted: 2017/01/8 | Published: 2017/10/28

1. G.A. Nowak, J. Kim, and M.N. Isla, "Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber," J. Appl. Opt. Vol. 38, pp. 7364-7369, 1999. [DOI:10.1364/AO.38.007364]
2. J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation is photonic crystal fiber," J. Rev. Mod. Phys. Vol. 78, pp. 1135-1184, 2006. [DOI:10.1103/RevModPhys.78.1135]
3. S. Hideyuki "2-4 Supercontinuum Generation and its Applications," J. National Institute Information Commun. Technol. Vol. 53, pp. 33-40, 2006.
4. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, "Two-octave supercontinuum generation in a water-filled photonic crystal fiber," Opt. Express, Vol. 18, pp. 6230-6240, 2010. [DOI:10.1364/OE.18.006230]
5. A.M. Heidt, A. Hartung, G.W. Bosman, P. Krok, E.G. Rohwer, H. Schwoerer, and H. Bartelt, "Thulium- doped fiber amplifier for optical communications at 2 µm," Opt. Express, Vol. 19, pp. 3775-3787, 2011. [DOI:10.1364/OE.19.003775]
6. C. Milián and D.V. Skryabin, "Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion," Optics Express, Vol. 28, pp. 3732-3739, 2013.
7. H.H. Tu and S.A. Boppart, "Laser Photon Coherent fiber supercontinuum for biophotonics," Laser Photon. Rev. Vol. 7, pp. 628–645, 2013. [DOI:10.1002/lpor.201200014]
8. S. Dupont and P.M. Moselund, "Lasse Leick, Jacob Ramsay, Søren R Keiding, Up-conversion of a megahertz mid-IR supercontinuum," J. Opt. Soc. Am. B, Vol. 30, pp. 2570-2575, 2013. [DOI:10.1364/JOSAB.30.002570]
9. B.A. Cumberland, J.C. Travers, S.V. Popov, and J.R. Taylor, "29 W High power CW supercontinuum source," Opt. Express, Vol. 16, pp. 5954-5962, 2008. [DOI:10.1364/OE.16.005954]
10. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh- resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. Vol. 26, pp. 608–610, 2001. [DOI:10.1364/OL.26.000608]
11. H. Kano and H-o. Hamaguchi, "Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy," Opt. Lett. Vol. 28, pp. 2360–2362, 2003. [DOI:10.1364/OL.28.002360]
12. K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. Vol. 39, pp. 544–546, 2003. [DOI:10.1049/el:20030344]
13. J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjakle, "Photonic crystal fibers, a newclass of optical waveguides," Opt. Fiber Technol, Vol. 5, pp. 305–330, 1999. [DOI:10.1006/ofte.1998.0279]
14. Ph.St.J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. Vol. 24, pp. 4729–4749, 2006. [DOI:10.1109/JLT.2006.885258]
15. J.M. Dudley and J.R. Taylor, Supercontinuum generation in optical fibers, Cambridge, 2010. [DOI:10.1017/CBO9780511750465]
16. L. Tian, L. Wei, and F. Guoying, "Numerical simulation of supercontinuum generation in liquid-filled photonic crystal fibers with a normal flat dispersion profile," Opt. Commun. Vol. 334, pp. 196-202, 2014. [DOI:10.1016/j.optcom.2014.07.080]
17. A. Hartung, A.M. Heidt, and H. Bartelt, "Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation," Opt. Express, Vol. 19, pp 7742-7749, 2011. [DOI:10.1364/OE.19.007742]
18. M. Michalska and J. Swiderski, "Three-octave spanning supercontinuum generation in a fluoride (ZBLAN) fiber," Electron Technology Conference, Vol. 8902, pp. 89021-89026, 2013. [DOI:10.1117/12.2030366]
19. H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, "Compact light source for ultrabroadband coherent anti-Stoke Raman scattering (CARS) microscopy," Opt. Express, Vol. 23, pp. 2872-2878, 2015. [DOI:10.1364/OE.23.002872]
20. V. Pureur and J.M. Dudley, "Design of solid core photonic bandgap fibers for visible supercontinuum generation," Opt. Commun. Vol. 284, pp. 1661–1668, 2011. [DOI:10.1016/j.optcom.2010.11.037]
21. N.S. Shahabuddin, N.A. Awang, H. Ahmad, H. Arof, K. Dimyati, Z. Yusoff, and S.W. Harun, "Supercontinuum generation using a passive mode-locked stretched-pulse bismuth-based erbium-doped fiber laser," Opt. Laser Technol. Vol. 44, pp. 741–743, 2012. [DOI:10.1016/j.optlastec.2011.11.039]
22. K.R. Khan, M.F. Mahmood, and A. Biswas, "Coherent Super Continuum Generation in Photonic Crystal Fibers at Visible and Near Infrared Wavelengths," IEEE J. Selec. Top. Quantum Electron. Vol. 20, pp. 573-581, 2014. [DOI:10.1109/JSTQE.2014.2302353]
23. Y.M. Wang, X. Zhang, X.M. Ren, L. Zheng, X.L. Liu, and Y.Q. Huang, "Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss," Appl. Opt. Vol. 49, pp. 292–297, 2010. [DOI:10.1364/AO.49.000292]
24. F. Poli, A. Cucinotta, S. Selleri, and A.H. Bouk, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. Vol, 164, pp. 1065–1067, 2004. [DOI:10.1109/LPT.2004.824624]
25. V. Finazzi, T.M. Monro, and D.J. Richardson, "Small-core silica holey fibers, Nonlinearity and confinement loss trade-offs," J. Opt. Soc. Am. B, Vol. 20, pp. 1427–1436, 2003. [DOI:10.1364/JOSAB.20.001427]
26. J.F. Liao, J.Q. Sun, Y. Qin, and M.D. Du, "Ultra-flattened chromatic dispersion and highly nonlinear photonic crystal fibers with ultralow confinement loss employing hybrid cladding," Opt. Fiber Technol. Vol. 19, pp. 468–475, 2013. [DOI:10.1016/j.yofte.2013.05.013]
27. J. Liao, J. Sun, M. Du, and Y. Qin, "Highly Nonlinear Dispersion Flattened Slotted Spiral Photonic Crystal Fibers," IEEE Photon. Technol. Lett. Vol. 26, pp. 380-383, 2014. [DOI:10.1109/LPT.2013.2293661]
28. M.-L. Zhai, W.-Y. Yin, Z (D). Chen, H. Nie and X-H. Wang, "Modeling of ultra-wideband indoor channels with the modified leapfrog ADI-FDTD method," Int. J. Numer. Model. Vol. 28, pp. 50–64, 2015. [DOI:10.1002/jnm.1983]
29. F.E. Seraji and F. Asghari, "Determination of Refractive Index and Confinement Losses in Photonic Crystal Fibers Using FDFD Method: A Comparative Analysis," Int. J. Opt. Photon. Vol. 3, pp. 3-10, 2009.
30. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructure optical fibers," Opt. Express, Vol. 10, pp. 853–864, 2002. [DOI:10.1364/OE.10.000853]
31. M. Chen, Q. Yang, T. Li, M. Chen, and N. He, "New high negative dispersion photonic crystal fiber," Optik, Vol. 121, pp. 867–871, 2010. [DOI:10.1016/j.ijleo.2008.09.039]
32. M. Aliramezani and Sh. Mohammad Nejad, "Numerical analysis and optimization of a dual-concentric-core photonic crystal fiber for broadband dispersion compensation," Opt. Laser Techno., Vol. 42, pp. 1209–1217, 2010. [DOI:10.1016/j.optlastec.2010.03.012]
33. Sh. Guo, F. Wu, S. Albin, and R.S. Rogowski, "Photonic band gap analysis using finite- difference frequency-domain method," Opt. Express, Vol. 12, pp. 1741–1746, 2004. [DOI:10.1364/OPEX.12.001741]
34. S.K. Singh, D.K. Singh, and P. Mahto, "Numerical Analysis of Dispersion and Endlessly Single Mode Property of a Modified Photonic Crystal Fiber Structure," Adv. Network. Appl. Vol. 3, pp. 1116-1120, 2011.
35. T. Karpisz, B. Salski, A. Szumska, M. Klimczak, and R. Buczynski, "FDTD analysis of modal dispersive propertiesof nonlinear photonic crystal fibers," Opt Quant Electron. Vol. 47, pp. 99–106, 2015. [DOI:10.1007/s11082-014-9987-y]
36. G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2013.
37. G.P. Agrawal, "Nonlinear fiber optics: its history and recent progress," J. Opt. Soc. Am. B, Vol. 28, pp. A1-A10, 2011. [DOI:10.1364/JOSAB.28.0000A1]
38. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, "Controlling the chromatic dispersion of soft glass highly nonlinear fiber through complex microstructure," J. Non-Crystalline Solids, Vol. 356, pp. 2613–2617, 2010. [DOI:10.1016/j.jnoncrysol.2010.02.008]
39. C. Chaudhari, M. Liao, T. Suzuki, and Y. Ohishi, "Chalcogenide Core Tellurite Cladding Composite Microstructured Fiber for Nonlinear Applications," J. Lightwave Technol., Vol. 30, pp. 2069-2076, 2012. [DOI:10.1109/JLT.2012.2191766]
40. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. Petrovich, J. Shi, W. H. Loh, and D. J. Richardson, "Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths," J. Opt. Fib. Technol. Vol. 16, pp. 378-391, 2010. [DOI:10.1016/j.yofte.2010.09.014]
41. M.R. Karim and B.M.A. Rahman "Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide," Opt. Quantum Electron. Vol. 48, pp. 174 (1-10), 2016.
42. R. Cherif, A.B. Salem, M. Zghal, P. Besnard, Th. Chartier, L. Brilland, and J. Troles "Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation," Opt. Eng. Vol. 49, pp. 095002 (1-6), 2010.