Volume 11, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 11, No 2, Summer-Fall 2017)                   IJOP 2017, 11(2): 79-86 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jalali M, Nadgaran H, Erni D. Design of Silicon Nano-Bars Anti-Reflection Coating to Enhance Thin Film Solar Cells Efficiency. IJOP. 2017; 11 (2) :79-86
URL: http://ijop.ir/article-1-269-en.html
Physics Department, Shiraz University, Iran
Abstract:   (1688 Views)

In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer with effective refractive index amid the two layers is formed and a graded refractive index AR coating is achieved, which has a substantial effect on broad, omnidirectional reduction of the reflection spectra. To validate our claim, the proposed structure as well as four conventional AR coatings are simulated and through the numerical analysis of both the spectral response of the reflection factor and the silicon active layer absorption spectra, it is shown that the proposed design outperforms conventional already existing AR coatings, and in addition provides a strong coupling of the incident light to the active layer, while improving the overall efficiency of the thin-film solar cell.

Full-Text [PDF 842 kb]   (693 Downloads)    
Type of Study: Applicable | Subject: General
Received: 2016/05/7 | Revised: 2016/09/26 | Accepted: 2016/11/3 | Published: 2017/08/8

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb