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Abstract—The nonlinear effects of the second 

harmonic generation have been investigated for 

the propagation of light along the axis of fibers 

of wagon wheel cross sectional shape. Nodal 

finite element formulation is utilized to obtain 

discretized Helmholtz equations under 

appropriate boundary conditions. The 

hierarchical p-version nodal elements are used 

for meshing the cross section of wagon wheel 

fiber. The fiber material has been chosen to be 

LiTaO3 to provide proper second harmonic 

generation. Propagation of generated second 

harmonics for two incident field amplitudes are 

studied in this work. 
 

KEYWORDS: Second harmonics, Wagon wheel 

fiber, Finite element method, LiTaO3. 

I. INTRODUCTION 

Nonlinear wave propagation has been 

investigated by many researchers over the last 

30 years. Many interesting phenomena have 

been observed in the literature due to the 

theoretical and experimental works reported on 

nonlinear effects [1-3] such as second 

harmonic generation in fibers. 

In 2001, a full vectorial three-dimensional 

beam-propagation method (BPM), based on 

the finite-element formalism, was described 

for the analysis of second harmonic generation 

(SHG) in a waveguide [1]. SHG in holey 

optical fibers was carried out by Monro, et al. 

[2] in the same year. Holey or microstructured 

optical fibers (HFs) possess wavelength-scale 

air holes in the cladding, which lead to a 

unique range of optical properties. For 

example, these fibers can endlessly be single 

mode where the mode area can be tailored over 

three orders of magnitude. 

In 2003, K. Moutzouris et al. [4] report optical 

second-harmonic generation, SHG, through 

modal phase matching in GaAs/AlGaAs 

semiconductor waveguides using femtosecond 

pulses. They observed both type-I and type-II 

SHG for input signal wavelength near 1.55 m 

and obtained practical SHG average powers of 

up to 10 W with an average input power of 

65 mW for the most efficient type-II 

interaction. 

In 2006, L. Scaccabarozzi et al. [5] observed 

the SHG from an AlGaAs/AlxOy waveguide 

which they could enhanced it up to 10 times by 

forming a waveguide-embedded cavity. In 

2011, Rahman et al. [6] designed and analyzed 

various photonic crystal fibers employing full 

vectorial FEM approach. They could control 

the dispersion for supercontinuum generation, 

the leakage loss and design optimization of 

SHG. 

In 2009, a new generation of fibers consisting 

of an optical fiber with a suspended micron-

scale core was made and named wagon wheel 

fiber [3]. The fiber designs consist of an 

optical fiber that is partially exposed to the 

external environment, makes it particularly 
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useful for sensing. These fibers allow for 

strong evanescent field interactions with the 

surrounding media due to the small core size, 

providing the potential for real-time and 

distributed measurements. 

In this paper, we will solve full Maxwell's 

equations to find the second harmonic 

corrections on the modes of fiber structures 

known as wagon wheel [7, 8] by implementing 

nodal finite element method. The hierarchical 

p-version nodal elements of 7 nodes triangular 

and 9 nodes quadrilateral [9, 10] elements are 

used to mesh the cross section of wagon wheel 

fiber. 

One of the symmetry properties posed by some 

of the crystals is inversion symmetry. For a 

material system that is centro-symmetric, the 

χ
2
 nonlinear susceptibility vanishes identically. 

Since the second-order nonlinear interaction is 

eliminated for all crystals belonging to this 

class, we use LiTaO3 as wagon wheel fiber 

material due to its birefringent property. 

The eigenvalue problem is solved in x-y plane 

and a set of β1s and a set of β2s are computed. 

In the evaluation process, one eigenvalue from 

each set was selected based on similarity in 

their corresponding eigenvectors. The set of 

nonlinear differential equations were solved 

using Galerkin finite element formulation.  

Maxwell's equations are the starting point for 

any problem in electromagnetism [1]. The 

Maxwell's equations are simplified as: 

 
2

0 0 02
[ ] 0NL

t
   


   


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where ε0, μ0 and [ε] are the vacuum electric 

permittivity, vacuum magnetic permeability 

and the linear relative permittivity tensor of the 

medium, respectively. The values of the linear 

relative permittivity tensor elements could be 

found from references [11,12].
NL

P  is the 

nonlinear polarization vector. If one assumes 

the space and time dependence of the electric 

field to be:  
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where eu, ev, and ew are the three components 

of the electric field, e. Making use of the 

method defined in reference [13], the wave Eq. 

(1) would be simplified as: 
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The total electric field vector and the nonlinear 

polarization vectors, respectively, are assumed 

to be given in the form of a superposition of 

the input signal (i=1) and the second harmonic 

(i=2) waves as: 
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(5) 

where pxi , pyi and pzi are the components of the 

second-order nonlinear polarization amplitude, 

ip . is the phase mismatch between the 

input signal and the generated second 

harmonic waves defined as  β2-2β1. The 

dependence of the components of the 

polarization amplitudes, 
ip , one the electric 

field components are given in references 

[14,17] where the optical tensor is defined. 

II. APPLIED FEM  

In this section we devise the finite element 

method to the present boundary value problem 

employing a full vectorial case. The steps 

taken here are: 
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1. defining a proper mesh on the cross 

section of the fiber, 

2. selecting interpolation functions, 

3. deriving a secular equation by a Galerkin 

method and 

4. solving the secular equation for the z-

component of the wave vector, . 

 
Fig. 1. A typical mesh for wagon wheel fiber's cross 

sectional view. 

 
Fig. 2. The cross sectional meshing of fiber shown 

in Fig. 1 emphasizing the core’s mesh. 

The objective is to obtain the wave 

propagation profile using Eq. (3). In this study 

ω is assumed as a known parameter and β is 

unknown. Finite element interpolation for each 

field components can be defined as: 

1

( , ) ( ) [ ]{ }
un

u k k
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
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where nu, nv and nw are dimensions of 

interpolation spaces [], [], [], {u}, {v} and 

{w}. Therefore, the electric field is written as: 

( )( , ) j t zt e  E r σφ  (9)

 where 
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and 
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 
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φ  (11) 

are ( ) 3u v wn n n    and 3 ( )u v wn n n    

dimensional matrices, respectively, where [], 

[] and [] are vector interpolation functions 

of two variables (x,y) and {u}, {v} and {w} are 

vector interpolation functions of single 

variable (z). Each basis u, v and w is obtained 

through tensor multiplication of two single 

dimensional hierarchical interpolation 

functions. Hierarchical triangular element used 

here is based on Szabo formulation [9]. A 

mesh sample for wagon wheel’s cross section 

is shown in Figs. 1 and 2 as defined by the 

figure captions. Employing the Galerkin 

method [18,19], we arrive at: 

   

   
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2 * 2 *
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       , , 0
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where the inner product (a,b) is defined as the 

integration over the boundary; i.e. 
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( , ) :


  a b a b d . (13) 

Prior to arriving at the propagation equation, 

one needs to solve for an eigen-problem to 

obtain the eigen-modes, which yields a series 

of is for any input signal of frequency 1. 

Rewriting the Eq. (12), the propagation 

equation included the nonlinear term, NL
P , 

yields [15]: 
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where i stands for initial, i=1, and generated 

nonlinear signal, i=2, and 
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Now, we will generalize the finite element 

formulation and interpolate in the z direction 

to find the solution to Eq. (14), which is the 

evolution of the input signal and the generation 

of its second harmonic along the fiber. 

Therefore, in order to be able to write the 

Galerkin’s form of Eq. 14, let’s define: 
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where p is the order of approximation along 

the z direction. 

 

Fig. 3. A sample of element in z direction. 

Therefore, the Galerkin form of Eq. (14) takes 

the form: 
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 (22) 

where the quantities i are defined along the 

z-axis as in Fig 3. 
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The nonlinear set of equations given in (22), 

are solved by applying Newton-Raphson root 

finding technique, hence, 

0 0( ) ( ){0} ( ) | | ...G G G       .  (23)
 

Let’s define
00 ( )( ) |J G   , therefore, we 

conclude that: 

0( ) 0| ( )G J      (24) 

to the first order approximation in ||. The 

convergence tolerance for this procedure was 

set at 610  . 

 
Fig 4. The mesh used to find the modes of a 

rectangular cross section waveguide in the present 

FEM method. 

III. RESULTS AND DISCUSSION 

The method devised, here, was coded into the 

SyNA computational tool [20] developed at 

Kerman Graduate University of Technology. 

In order to check the validity of the method 

devised and the computer code developed, the 

numerical solution for SHG in a typical 

rectangular waveguide was calculated 

analytically as well. The analytical solutions to 

a typical rectangular waveguide of cross 

section of LxLy is a textbook problem and the 

modes for mode numbers m and n are: 

  
b

mn
= n

x
k

0
1- m2L

0x

2 - n2L
0 y

2 , (25) 

where nx is the refractive index along the x axis 

for this birefringence material. The quantities 

0x and 0y are defined as 0

2 z xn L


 and 

0

2 x yn L


, respectively, where 0 is the 

wavelength of the incident signal and nz is the 

refractive index along the z axis. 

Table 1: Analytical and numerical results of β1 

and β2 in a rectangular waveguide at wavelength 

0.866 m for four modes. 

Solution 

     for βs 

Mode 

No. 

Analytical Numerical 

1 2 1 2 

5 15.55 31.11 15.55 31.11 

8 15.54 31.08 15.54 31.07 

23 15.48 30.96 15.47 30.94 

38 15.32 30.65 15.37 30.74 

 

 

 
Fig. 5. The electric field distribution for the 

fundamental mode of the rectangular waveguide at 

1found (a) numerically and (b) analytically. 

Vertical coordinate is the relative Electric Field 

amplitude. 
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The generated mesh for the rectangular 

waveguide cross section is presented in Fig. 4. 

The results of β1s and β2s at 4 different modes 

are tabulated in Table 1, where the numerical 

and analytical results agree better than 0.1%. 

The electric field distributions at the fiber’s 

cross section for the fundamental mode (mode 

number 5) is plotted in Figs. 5 employing the 

numerical and analytical calculations, 

respectively. Comparing the data for β1s and 

β2s, shown in Table 1 and the electric field 

distributions (shown in Figs. 5) approve our 

consistency check for the model and numerical 

code developed in this work. Employing the 

method devised and the computer code 

developed, we calculated the second harmonic 

generation in a wagon wheel fiber type and the 

propagation of a defined input signal in it. 

 
(a) 

 
(b) 

Fig. 6. Electric field distribution of mode number 1 

for SHG (2=32.718) at the WW fiber’s cross 

section. (a) Three dimensional plot, and (b) planar 

diagram. Vertical coordinate is the relative 

amplitude of electric field.  

A wagon wheel fiber, whose core is made 

from LiTaO3, was assumed while the rest of 

the wagon wheel’s material is pure glass in the 

present study of nonlinear effects of wagon 

wheel fibers. The core diameter and the outer 

diameter of the fiber are, respectively, 3.19m 

and 43.01m. The wavelength of the input 

signal, 0, is assumed to be equal to 0.866m. 

The ordinary and the extraordinary refractive 

indices [11] for LiTaO3 at 0 and 0/2 are 

no(0)=2.148, ne(0)=2.152, ne(0/2)=2.253, 

and no(0/2)=2.258. The non-zero nonlinear 

elements of optical tensor [21, 22] for LiTaO3 

are d33=-27(pm/V),
 

d31=d15=-4.7(pm/V) and 

d22=2.2(pm/V). Field distribution of mode 

number 1 for SHG (2=32.718) in the x-y 

plane is shown in Fig. 6. 

In Table 2, we list the values of  β2-2β1 

for the first four modes. It indicates that there 

is a mismatch in phase between the input 

signal and the second harmonic waves, which 

increases with increasing mode number. Note 

that the modes with a number of degeneracies 

are considered as one mode. 

Table 2: The eigenvalues 1 and 2 at four mode 

numbers for a fiber with core and lateral diameters of 

3.19m and 43.01m, respectively. 

Mode No. 1 5 7 10 

1 15.544 15.515 15.449 15.420 

2 32.718 32.667 32.655 32.655 

 1.63 1.63 1.75 1.81 

 

Propagation of the input signal, w1, along the 

fiber (z-direction) with β1=15.544 and 

generated second harmonic field amplitude, 

w2, along the fiber with β2=32.718 is studied. 

An initial signal intensity defined as 0 with 

known values of u, v and w at z=0 is used as 

the initial configuration for the propagation of 

the electric field in the fiber to start the 

Newton-Raphson root finding technique. 

Three cases with initial signal intensities of 

10000, 1000 and 100 are studied here and 

the propagation of maximum amplitude along 

the fiber for each case is shown in Fig. 7(a-c) 

respectively. 
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The two curves cited in Fig. 7(a-c) cross at 222 

µm, 261 µm and 283 µm, respectively, 

showing that nonlinearity effects increase with 

increasing the input signal intensity as 

expected. 

  
 (a) 

  
 (b) 

 

(c) 

Fig. 7. The evolution of maximum amplitude along 

the fiber for the initial signal of (a) 10000, (b) 

1000, and (c) 100 at z=0, where w1 and w2 are 

the field amplitudes of input signal and the 

generated second harmonic, respectively. 

Also the intensity of w2 wave, in the three 

cases examined, is increasing as the input 

signal advances along the z-axes, which 

signifies that the second harmonic generation 

along the fiber is enhancing. Furthermore, the 

intensity of the input signal, w1, is decreasing. 

Therefore, the input field is dampening along 

the fiber.  

IV. CONCLUSION 

The second harmonic generation along a 

wagon wheel type fiber of core made from 

SHG active material LiTaO3 was investigated 

for three intense pulses at amplitudes of 

multiples of 10. Making use of the Galerkin 

finite element formalism, the set of nonlinear 

differential equations were solved. The 

eigenvalue problem solved in the x-y plane 

and a set of 1s, eigen-mode of the initial 

signal, and a set of 2s, eigen-mode of SHG 

signal, are calculated as listed in Table 2. In 

the evaluation process, one eigenvalue from 

each set was selected based on similarity in 

their corresponding eigenvectors.  

Input signal, w1, field amplitude in z direction 

with β1=15.544 and second harmonic w2 field 

amplitude in z direction with β2=32.718 as a 

function of distance was calculated that is the 

evidence of SHG enhancement in wagon 

wheel fiber having a core made from LiTaO3. 

The second harmonic generated in the core 

enhanced more efficiently as the input signal 

amplitude was increased and reaching a higher 

amplitude as compared with the input signal at 

a closer distance in the fiber. 

As this is the first such work for the second 

harmonic generation and there are no 

theoretical or experimental results, in the 

literature, we could not compare the results 

with any other work. However, in order to test 

the accuracy of the FEM code devised, the 

generated second harmonic in a waveguide 

with a square cross section was obtained and 

compared with the analytical results which are 

textbook level problem and it was easily 

obtained. The agreement shows that the 

method properly describes the system devised. 

We recommend more work on the topic of 

SHG from wagon wheel type fibers. This is of 

value in the medical and industrical 

applications. More importantly, SHG is more 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

op
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                             7 / 10

http://ijop.ir/article-1-257-en.html


M.S. Hoseinian at al. Galerkin Finite-Element Method for the Analysis … 

120 

intense when compared with the third 

harmonic generation, THG. 
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