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ABSTRACT- In this paper we consider 
electromagnetic field quantization in the 
presence of a dispersive and absorbing 
semiconductor quantum dot. By using 
macroscopic approach and Green's function 
method, quantization of electromagnetic field is 
investigated. Interaction of a two-level atom , 
which is doped in a semiconductor quantum 
dot, with the quantized field is considered and 
its spontaneous emission rate is calculated. 
Comparing with the same condition for an 
excited atom inside the bulk, it is shown that the 
spontaneous emission rate of an atom will 
decrease. 
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I. INTRODUCTION 
In recent years, semiconductor nanostructures 
have drawn a lot of attentions. The rapid 
progress of nano-fabrication technologies 
making it possible to grow zero-dimensional 
semiconductor systems that are not spoiled by 
fabrication-induced damage. These zero-
dimensional semi-conductors are known as 
quantum dots and they have so many useful 
applications in science and technology. 
Quantum dot applications proposed so far 
range from lasers to memory devices and from 
single-photon emitters to quantum bits for 
quantum optics and quantum information. In 
quantum optical applications of quantum dots, 
there are two approaches for considering 
interaction of QD with electromagnetic field. 
In one approach electromagnetic field modes 
in free space interact with QD. So, in this 
manner presence of QD does not have any 
effect on the process of field quantization. This 

approach is used in semiclassical and quantum 
considerations [1, 2]. 

In other approach, presence of the QD will 
have some effects in the process of the field 
quantization. This method is called the method 
of Green's function expansion [3], which can 
be regarded as a natural extension of the 
familiar method of mode expansion for 
arbitrary Kramers-Kronig media. This 
approach, which resembles, in a sense, the 
method of operator Langevin forces [4], 
directly starts with the Maxwell's equations for 
the macroscopic electromagnetic field, 
including the dielectric displacement vector 
and a phenomenologically given permittivity. 
The quantization of the radiation field is based 
on the classical Green's function representation 
of the vector potential. In this approach the 
external sources therein are identified with 
noise sources that are necessarily associated to 
the losses in the medium. By using these 
quantized fields, spontaneous emission of an 
atom in such a medium can be considered. 

Spontaneous emission is known as a 
consequence of the action of the vacuum 
fluctuations on a physically measurable 
process. Einstein [5], already pointed out that 
in order to obtain the Planck radiation law, a 
process as spontaneous emission must 
necessarily be include in the theory of atomic 
decay. Later on, the radiation properties of an 
excited atom located in free space have been a 
subject of many studies [6]. The vacuum field 
is modified by the local environment where 
boundaries alter modes of vacuum field around 
the atom and affect the spontaneous emission 
rate. In many studies it has been shown that 
the spontaneous emission rate can be changed 
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by embedding the atom inside a dielectric 
host[6] and other cavities [7, 8]. 

In this paper we use Green's function approach 
to quantize radiation field in the presence of a 
semiconductor quantum dot. Then using this 
quantized field Hamiltonian, spontaneous 
emission of a two-level atom due to its 
interaction with the field inside a spherical 
quantum dot is calculated. The paper is 
organized as follows. In Sec.II, the 
quantization of electromagnetic fields in the 
presence of a semiconductor quantum dot is 
prepared. In Sec.III, by using quantization 
scheme gained, the spontaneous decay rate of 
an excited two-level atom doped at the center 
of a spherical quantum dot is investigated. 
Finally the results are discussed in Sec.IV.  

II. QUANTIZATION OF 
ELECTOMAGNETIC FIELD IN THE 
PRESENCE OF A SEMICONDUCTOR 

QUANTUM DOT 
A. Quantization scheme for arbitrary 
dielectric  
Our analysis of quantization of the field in the 
presence of an absorbing medium is based on 
the scheme for quantization of the fields in 
linear Kramers-Kronig dielectrics developed in 
Refs.[3, 9, 10]. The start point of this approach 
is quantum Maxwell equations with 
constitutive relations  

( ) ( ) ( ) ( ) ( )0 0, = , , = , , ,ˆ ˆ ˆ ˆω ε ω ω ε ε ω ω+D r E r P r r E r  

 (1) 

( ) ( )0, = , .ˆ ˆω μ ω∇ ⋅ ∇ ⋅B r H r  (2) 

where, ),(),(=),( ωεωεωε rrr IR i+  is the 
permittivity satisfying the kramers-Kronig 
relations and vector operator ),(ˆ ωrP , noise 
polarization vector, is related to ),(ˆ ωρ r  and 

),(ˆ ωrj , the noise charge and noise current 
density operators, respectively:  

( ) ( ), = , ,ˆ ˆiω ω ω−j r P r  (3) 

( ) ( ), = , .ˆρ̂ ω ω−∇ ⋅r P r  (4) 

It is worth to note that the equation of 
continuity is satisfied by these density 
operators. Quantum Maxwell equations and 
constitutive relations (1) and (2) lead to the 
wave equation for Ê  operator as follows  

( ) ( ) ( ) ( )
2

02, , , = , .ˆˆ ˆ ˆ ˆ i
c
ωω ε ω ω ωμ ω∇×∇× −E r r E r j r

 (5) 

This equation can be solved in terms of Green 
tensor as  

( ) ( ) ( )3
0, = , , , ,ˆˆ i dω μ ω ω ω′ ′

′ ′ ′∫k kk k
E r r G r r j r  

 (6) 

where ),,( ωrrG ′′kk  is classical dyadic Green's 
function satisfying the partial differential 
equation  

( ) ( ) ( )

( )

2

2, , , , , =

.

ˆ ˆ
c
ωω ε ω ω

δ

′ ′∇×∇× −

′−

G r r r G r r

r r
 (7) 

Using the Green's function and quantum 
Maxwell equations, one can find electric and 
magnetic field operators. Hamiltonian of the 
system can be written as  

( ) ( )3

0
= , , ,†

field
ˆ ˆĤ d dω ω ω ω

∞

∫ ∫r f r f r  (8) 

This is the Hamiltonian of the field in the 
presence of medium. In this Hamiltoninan 

),(ˆ ωrf  and ),(ˆ† ωrf , are annihilation and 
creation field operators in the presence of the 
medium, respectively. Therefore, ),(ˆ ωrf  is 
annihilation operator of a photon with energy 
ω  in a medium. It is worth to note that in 

this approach, the effects of medium (quantum 
dot) have been included because of the 
existence of the noise operator in Maxwell's 
equations. This is due to the fact that 
absorption in the medium is modeled by the 
noise operator. On the other hand, the classical 
dyadic Green's function is determined by the 
boundary condition. Therefore, all physical 
effects associated to medium (absorption and 
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boundary conditions) are included in the 
configuration. It can be proved that 
quantization scheme is fully consistent with 
QED for arbitrary linear dielectrics [10], i.e., 

( ) ( ) ( )0 , = ,r
k k klm m

ˆ ˆE B iε ε δ⎡ ⎤′ ′− ∂ −⎣ ⎦r r r r  (9) 

( ) ( ) ( ) ( ), = , = 0.k l k l
ˆ ˆ ˆ ˆE E B B⎡ ⎤ ⎡ ⎤′ ′⎣ ⎦ ⎣ ⎦r r r r  (10) 

As is seen, the quantization in the presence of 
an arbitrary medium that satisfies Kramers-
Kronig conditions leads to the problem of 
calculating the Green's function of that 
configuration. Then by using Eq. (6) to find 
the electric field operator in terms of creation 
and annihilation operators ),(ˆ† ωrf  and 

),(ˆ ωrf , and  using Maxwell equations,  other 
field operators can be derived.  

B. Dielectric constant and dyadic Green's 
function 
In previous subsection, we have found that the 
problem of quantization of electromagnetic 
fields in the presence of an arbitrary dielectric 
leads to calculate the classical Green's function 
of the system. Also, the dielectric function of 
that medium should satisfy the Kramers-
Kronig relations. So, for quantizing the 
electromagnetic fields in the presence of the 
semiconductor quantum dot there are two 
stages: first of all, we should introduce a 
dielectric function of the semiconductor 
quantum dot and in the next stage we have to 
find the appropriate Green's function for the 
system. A schematic structure of this system is 
shown in Fig.1. The dielectric constant of a 
quantum dot can be defined as a Lorentzian 
model [11]: 

γωωω
εωε

i
F

ex −−
+∞ 22=)(

 (11) 

where ∞ε  is the dielectric constant of the 
background, exω  is the first excitonic 
transition, γ  is the width of the peak of the 
first excitonic transition and F  is the 
parameter related to the excitonic oscillator 
strength and the dimensions of quantum dot 
[12]. 

Now we can solve classical Green equation 
(7), using boundary conditions on the surface 
of quantum dot  

,= 1)( sffs +×× GrGr
( )1

0 0

1 1= ,f sfs

μ μ
+×∇× ×∇×r G r G  (12) 

( 1,2=f  refers to different mediums). By 
calculating the Green's function, all field 
operators will be obtained. The Green's 
function related to the spherical quantum dot 
in free space can be written as a superposition 
of two parts  

( ) ( ) ( ), = , , ,fs V′ ′ ′+ fsG r r G r r R r r  (13) 

that )',( rrGV  is vacuum Green tensor relevant 
to dielectric without boundary and fsR  is 
relevant to all multiple transmission and 
reflection because of the boundaries of 
quantum dot. Using 1,2=f  one can find the 
field outside of quantum dot and inside it, 
respectively (see Fig.1).  

( , ', )ωR r r  can be divided in two parts: 
( , ', )ω12R r r  is the field in the free space and 
( , ', )ω22R r r  is the field inside a quantum dot:  

 
 Vacuum 

Fig 1. A spherical quantum dot in the free space. 
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( )
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( ) ( )
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( ) ( )
( )
( )

( ) ( )

( ) ( )

22 02
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22
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n n n m

C M k M k

C N k N k ,

ω δ
π

∞ −+
− ×

+ +

⎡ ⊗ +⎢⎣
⎤⊗ ⎥⎦

∑∑r r

r r

r r

 (15) 

where  

( ) ( )= ,e enm nmo o

ˆM k kψ⎡ ⎤∇× ⎢ ⎥⎣ ⎦
r  (16) 

( ) ( )1= ,e enm nmo o

ˆ ˆN k k
k

ψ⎡ ⎤∇×∇× ⎢ ⎥⎣ ⎦
r  (17) 

with  

( ) ( ) ( ) ( )= ,m
e n nnmo

cos
k j kr P cos m

sin
ψ Θ ϕ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (18) 

 that  

( )1 2= , =k k
c c
ω ωε ω , (19) 

 and )(krjn  is spherical Bessel function of the 
first kind; )cos( Θm

nP  is associated Legendre 
polynomial; For the rather lengthy expressions 
of the generalized reflection coefficients 

22
)(

12
)( , NMNM CA , see [13]. 

Now the Green's function of the system is 
calculated and according to the previous 
section we can write quantized 
electromagnetic field operators inside the 
quantum dot and in free space:  

( ) ( ) ( )3
0, = , , , ,fs fs

k kk k
ˆÊ i d jω μ ω ω ω′ ′′ ′ ′∫r r G r r r  (20) 

( ) ( ) ( )1, = ,fs fs
k k

ˆ ˆB i Eω ω ω− ∇×r r  (21) 

In the next section we will consider the effects 
of the quantization on the spontaneous 
emission of a two level atom centered in a 
semiconductor quantum dot. 

 

 

III. SPONTANEOUS EMISSION OF AN 
EXCITED ATOM DOPED INSIDE A 

SEMICONDUCTOR QUANTUM DOT 
The electric and magnetic field operators, (20) 
and (21), can be expressed in terms of vector 
Â  and scalar ϕ̂  potentials. In the following 
we will work with Coulomb Gauge. This 
gauge condition implies that both the 
transverse and longitudinal electric fields are 
obtained from the vector potential  

( ) ( ) ( )( )( ) = ,ˆ ˆ ˆ+ −+A r A r A r  (22) 

( ) ( ) ( ) ( )3
0 0

= , , , .kk k
ˆˆ d d jμ ω ω ω

∞+
′ ′′ ′ ′∫ ∫A r r G r r r  (23) 

Now, we consider the case which there is an 
external (two-level) atomic system in the 
position Ar . The atom is located inside a QD 
and interacts with the quantized field inside 
the QD. Treating its interaction with 
electromagnetic field in dipole and rotating 
wave approximations, the Hamiltonian of the 
total system can be given by  

( ) ( )
2

3

0
=1

= , ,†ˆ ˆ ˆĤ d d Aα αα
α

ω ω ω ω ω
∞

′ + −∑∫ ∫r f r f r  

( )( )
21 21 21 . . .A

ˆ ˆ ˆi A H cω +⎡ ⎤⋅ +⎣ ⎦A r d  (24) 

Here the atomic operators |=|ˆ αααα ′〉〈′A  are 
introduced, with 〉α| s being the atomic energy 
eigenstates ( 1,2=α ). The energies of the two 
states are assumed to be 1ω  and 2ω  
( 12 > ωω ), 1221 = ωωω −  and 21d̂  are the 
atomic transition frequency and dipole 
moment of the atom, respectively. Note that in 
the interaction term in Eq.(24), the 2Â  term 
and the counter-rotating terms are dropped. 
Following the approach introduced in [6], for 
the macroscopic dielectric medium, decay rate 
of an excited atom can be written as:  

( )
2

22
2

0

2= , , ,A k k
kk A A AR

c
ω μ μγ ω
ε

′
′Im r r  (25) 
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where ( )21 21,k Ak
dμ ω ω≡ ≡  and 

( )22 , ,kk A A Aω′G r r  is given in relation (13) by 
replacing r  and r′  with Ar . In the coincidence 
limit ( 0→→ 'rr ) only the TM wave vector 
Debye potential ( )

10e
o

N k  and ( )
11e

o
N k  

contribute to ( )22 , ,kk A A AR ω′ r r  and we find that  

( ) ( )( )22 22
=0 =1

, , | =
6kk A A A r N kknA

iR C ,
c
ωω ω δ
π′ ′r r  (26) 

 Hence, for Aωω = , we obtain the decay rate 
in the form of  

( )( )22
0 =1

= 1 N A n
C ,γ γ ω⎡ ⎤+⎣ ⎦Re  (27) 

where the generalized reflection coefficient 
( )( )22

=1N n
C ω  is given by  

( )22 1 1
=1

1

=
V V
F P

N Vn
P

T RC ,
T

 (28) 

with  

( )2 2 2 2 2
1

2 2 1 1 2 1

= ,V
F

k
T

k k
ℑ ∂ − ∂ℑ
ℑ ∂ − ∂ℑ

 (29) 

,=
211212

211122
1 ∂ℑ−∂ℑ

∂−∂
kk
kkRV

P

 (30) 

( )2 2 2 2 2
1

2 1 2 1 1 2

= ,V
P

k
T

k k
∂ℑ − ℑ ∂
∂ℑ − ℑ ∂

 (31) 

and  

( )= ,f n fj k Rℑ  (32) 

( )(1)= ,f n fh k R  (33) 

( )

=

1= ,n
f

k Rf

d j
d

ρ

ρ ρ
ρ ρ

⎡ ⎤⎣ ⎦∂ℑ  (34) 

( ) ( )1

=

1= ,
n

f

k Rf

d h

d
ρ

ρ ρ

ρ ρ

⎡ ⎤
⎣ ⎦∂  (35) 

and R  being the radius of quantum dot. 

The decay rate of an excited atom as a 
function of the atomic transition frequency 

exA ωω /  and Rr /= λ  has been depicted in 
Fig.2, according to the Eq.(27).  

As is clear, the less cavity radius R , the more 
maximum value of spontaneous decay rate, 
which occurs near the medium resonance.  

In Fig. 3, we have plotted the atom decay rate 
0Γ Γ  doped in the center of the quantum dot 

(solid line) and the atom decay rate 0bΓ Γ  of 
an atom in the spherical cavity of radius bR  in 
a surrounding medium with the single 
resonance model permittivity 

{ }2 2 2
0( ) = /p iε ω ω ω ω γω− − , (dashed line)1. 

These decay rates are plotted as a function of 
their atomic transition frequency with 

λ0.02== bRR . As is seen in this plot, 0bΓ Γ  
exceeds 0Γ Γ  while two decay rates have the 
same behavior near the resonance of their 
mediums, qualitatively. 

 
Fig. 2. The spontaneous decay rate 0Γ Γ , 
Eq. (27), of a two level atom at the center of a 
quantum dot as a function of r Rλ=   and the 
atomic transition frequency Aω  near the first 
exciton resonance at exω , using permittivity (11) 
for 0 2 ex.γ ω= , 0 02R . λ= , 66F = .  

                                                           
1 It has been depicted according to Green's function 
derived in Ref. [6] 
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Fig. 3. The spontaneous decay rate 0Γ Γ , Eq. 
(27), of a two level atom at the center of a quantum 
dot as a function of the atomic transition frequency 

Aω  near the first exciton resonance at exω , using 
permittivity of Eq. (11) for 0 2 ex.γ ω= , 0 02R . λ=  
and 66F =  (solid line). The spontaneous decay 
rate 0bΓ Γ  of a two level atom inside a 
microcavity in the bulk as a function of the atomic 
transition frequency Aω  near the medium 

resonance 0ω , using a model permittivity of 

Lorentz type and for 0= 0.5γ ω λ0.02=R , 

00.46= ωω p  (dashed line). 

As another interesting aspect, an excited atom 
in an absorbing medium undergoes both 
radiative and nonradiative damping, and in 
dense media nonradiative decay can be much 
faster than radiative one. Since the 
radiationless decay typically happens at 
longitudinal frequency Lω , one observes, for 
sufficiently small values of γ  and R ( )bR , a 
shift of the maximum of the decay rate from 

exω  to longitudinal frequency 

( ) ( )22=L ex pex ex
ω ω ω+  for 0Γ Γ  and from 0ω  

to longitudinal frequency 22
0= pL ωωω +  for 

0bΓ Γ  ( )p ex
ω  and pω  to longitudinal 

frequency 22
0= pL ωωω +  for 0bΓ Γ  ( ( )p ex

ω  

and pω  are plasma frequency related to 
quantum dot and bulk, respectively), which 
( ) 0/ > /L ex Lex
ω ω ω ω . By introducing ( )p ex

ω  as a 
plasma frequency of quantum dot, and by 
comparing with a plasma frequency of a bulk, 
we can conclude that ( ) 0/ > /p ex pex

ω ω ω ω . 

IV. CONCLUSION 
In this paper the quantization of 
electromagnetic fields in the presence of a 
semiconductor quantum dot is discussed. Our 
approach is based on the Green's function that 
is applicable only for Kramers-Kronig 
dielectrics. In this approach by calculating the 
Green's function of the wave equation that its 
sources are considered as noises due to 
absorption in medium, field operators are 
obtained. Then we use the Green's function of 
the system to calculate the spontaneous 
emission of a two level atom doped in the 
center of a quantum dot. The results show that 
the maximum value of spontaneous decay rate 
occurs near the medium resonance and 
increases by decreasing value of quantum dot 
radius. If one, wrongly, uses simple Lorentz 
model for permittivity of quantum dot, 
negative values of decay rate will be appeared 
which is not correct. 

In comparison with decay rate of an atom 
inside a spherical microcavity in the bulk [6], 
it is shown that the decay rate of spontaneous 
emission for a two level atom doped in the 
center of a semiconductor quantum dot is 
smaller than the decay rate of an atom in the 
center of the cavity inside a bulk but it is yet 
much greeter than 0Γ . Also, it is shown that 
the shift of the maximum of the decay rate 
from transition frequency of the quantum dot 
is larger than the same one for a bulk. By 
introducing ( )p ex

ω  as a plasma frequency of 
nanostructure quantum dot it means that 
( ) 0/ > /p ex pex
ω ω ω ω . 
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