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ABSTRACT- In this paper we consider
electromagnetic field quantization in the
presence of a dispersive and absorbing

semiconductor quantum dot. By using
macroscopic approach and Green's function
method, quantization of electromagnetic field is
investigated. Interaction of a two-level atom |,
which is doped in a semiconductor quantum
dot, with the quantized field is considered and
its spontaneous emission rate is calculated.
Comparing with the same condition for an
excited atom inside the bulk; it is shown that the
spontaneous emission rate of an atom will
decrease.
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I. INTRODUCTION

In recent years, semiconductor nanostructures
have drawn a lot of attentions. The rapid
progress of nano-fabrication technologies
making it possible to grow zero-dimensional
semiconductor systems that are not spoiled by
fabrication-induced damage. These zero-
dimensional semi-conductors are known as
guantum dots and they have so many useful
applications in science and technology.
Quantum dot applications proposed so far
range from lasers to memory devices and from
single-photon emitters to quantum bits for
quantum optics and quantum information. In
guantum optical applications of quantum dots,
there are two approaches for considering
interaction of QD with electromagnetic field.
In one approach electromagnetic field modes
in free space interact with QD. So, in this
manner presence of QD does not have any
effect on the process of field quantization. This
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approach is used in semiclassical and quantum
considerations [1, 2].

In other approach, presence of the QD will
have some effects in the process of the field
quantization. This method is called the method
of Green's function expansion [3], which can
be regarded as a natural extension of the
familiar method of mode expansion for
arbitrary  Kramers-Kronig  media.  This
approach, which resembles, in a sense, the
method of operator Langevin forces [4],
directly starts with the Maxwell's equations for
the  macroscopic  electromagnetic  field,
including the dielectric displacement vector
and a phenomenologically given permittivity.
The quantization of the radiation field is based
on the classical Green's function representation
of the vector potential. In this approach the
external sources therein are identified with
noise sources that are necessarily associated to
the losses in the medium. By using these
quantized fields, spontaneous emission of an
atom in such a medium can be considered.

Spontaneous emission is known as a
consequence of the action of the vacuum
fluctuations on a physically measurable
process. Einstein [5], already pointed out that
in order to obtain the Planck radiation law, a
process as spontaneous emission  must
necessarily be include in the theory of atomic
decay. Later on, the radiation properties of an
excited atom located in free space have been a
subject of many studies [6]. The vacuum field
is modified by the local environment where
boundaries alter modes of vacuum field around
the atom and affect the spontaneous emission
rate. In many studies it has been shown that
the spontaneous emission rate can be changed
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by embedding the atom inside a dielectric
host[6] and other cavities [7, 8].

In this paper we use Green's function approach
to quantize radiation field in the presence of a
semiconductor quantum dot. Then using this
quantized field Hamiltonian, spontaneous
emission of a two-level atom due to its
interaction with the field inside a spherical
quantum dot is calculated. The paper is
organized as follows. In Sec.ll, the
quantization of electromagnetic fields in the
presence of a semiconductor quantum dot is
prepared. In Sec.Ill, by using quantization
scheme gained, the spontaneous decay rate of
an excited two-level atom doped at the center
of a spherical quantum dot is investigated.
Finally the results are discussed in Sec.IV.

I1. QUANTIZATION OF
ELECTOMAGNETIC FIELD IN THE
PRESENCE OF A SEMICONDUCTOR

QuUANTUM DoT
A. Quantization scheme for arbitrary
dielectric

Our analysis of quantization of the field in the
presence of an absorbing medium is based on
the scheme for quantization of the fields in
linear Kramers-Kronig dielectrics developed in
Refs.[3, 9, 10]. The start point of this approach
is quantum Maxwell equations with
constitutive relations

b(r,w) = gOAE(r,a))+i°(r,a)) = gog(r,a))if(r,a)),

1)
V-AB(I’,a))=,uOV-IA-|(r,a)). (2

where, &(r,m) = gx(r,o)+ig, (r,o) is the
permittivity satisfying the kramers-Kronig
relations and vector operator E(r,a)), noise
polarization vector, is related to é(r,a)) and

j(r,a)), the noise charge and noise current
density operators, respectively:

Aj(r,a))=—i oP(r, ), (3)
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Ag(r,a))=—V-AE(r,a)). 4)

It is worth to note that the equation of
continuity is satisfied by these density
operators. Quantum Maxwell equations and
constitutive relations (1) and (2) lead to the

wave equation for E operator as follows

~ ~ ~ 2 ~ ~

VxVxE(r,a))—Z)—zg(r,a))E(r,a))=ia),uoj(r,a)).
()

This equation can be solved in terms of Green
tensor as

E (ro)=ig[d°reG, (r.r o), (o),

(6)

where G, (r,r',w) is classical dyadic Green's

function satisfying the partial differential
equation

N 2
<V xG (1,1 o) -2 &(r,0)G(r,r )=

c (7)

<>

S(r-r").

Using the Green's function and quantum
Maxwell equations, one can find electric and
magnetic field operators. Hamiltonian of the
system can be written as

~

H, = Id 3rJ‘:d whaot' (r,o)f(r,o), (8)

This is the Hamiltonian of the field in the
presence of medium. In this Hamiltoninan
f(r,w) and f'(r,w), are annihilation and
creation field operators in the presence of the
medium, respectively. Therefore, f(r,®) is
annihilation operator of a photon with energy
hw n a medium. It is worth to note that in
this approach, the effects of medium (quantum
dot) have been included because of the
existence of the noise operator in Maxwell's
equations. This is due to the fact that
absorption in the medium is modeled by the
noise operator. On the other hand, the classical
dyadic Green's function is determined by the
boundary condition. Therefore, all physical
effects associated to medium (absorption and
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boundary conditions) are included in the
configuration. It can be proved that
quantization scheme is fully consistent with
QED for arbitrary linear dielectrics [10], i.e.,

&| By (r).B, ()] =-ingy, 08 (r=r"), 9)

[E. (r).E,(r)]=[B.(r).B (r)]=0. (10)

As is seen, the quantization in the presence of
an arbitrary medium that satisfies Kramers-
Kronig conditions leads to the problem of
calculating the Green's function of that
configuration. Then by using Eq. (6) to find
the electric field operator in terms of creation

and annihilation operators f*(r,a)) and

f(r,a)), and using Maxwell equations, other
field operators can be derived.

B. Dielectric constant and dyadic Green's
function

In previous subsection, we have found that the
problem of quantization of electromagnetic
fields in the presence of an arbitrary dielectric
leads to calculate the classical Green's function
of the system. Also, the dielectric function of
that medium should satisfy the Kramers-
Kronig relations. So, for quantizing the
electromagnetic fields in the presence of the
semiconductor quantum dot there are two
stages: first of all, we should introduce a
dielectric function of the semiconductor
quantum dot and in the next stage we have to
find the appropriate Green's function for the
system. A schematic structure of this system is
shown in Fig.1. The dielectric constant of a
quantum dot can be defined as a Lorentzian
model [11]:

F
e@)=e,+——5—
Dy — QO —'|7ZU (l]J

where ¢, is the dielectric constant of the
background, @, is the first excitonic

transition, y is the width of the peak of the

first excitonic transition and F is the
parameter related to the excitonic oscillator
strength and the dimensions of quantum dot
[12].
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Now we can solve classical Green equation
(7), using boundary conditions on the surface
of quantum dot

rxG® =rxG(s,

ir><§><GfS =ir><§><G(f+l)s, (12)
Hy Hy

(f =12 refers to different mediums). By

calculating the Green's function, all field
operators will be obtained. The Green's
function related to the spherical quantum dot
in free space can be written as a superposition
of two parts

G*(r,r)=G’ (r,r')+R"(r,r), (13)

that GY (r,r") is vacuum Green tensor relevant

to dielectric without boundary and R® is
relevant to all multiple transmission and
reflection because of the boundaries of
quantum dot. Using f =1,2 one can find the

field outside of quantum dot and inside it,
respectively (see Fig.1).

R(r,r,w) can be divided in two parts:
R™(r,r',w) is the field in the free space and
R?(r,r',w) is the field inside a quantum dot:

|

“\ Qb )
\ /
1 \\W//
Vacuum

Fig 1. A spherical quantum dot in the free space.

12 N | PR 0y 2n+1 (n—m)!x
REr )= 3 2= 0 ) (e )

n=0m=0

[A;;M (rk)®M, (rik,)+

e
On

APN,

Dnm

(r,kl)®Nenm(r',k2)},
(14)
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2/ 5° 2n+1 (n_m)!
REr0) =23 (2 n(n 1) (nem)
[Cf,,zMenm(r,k2)®Menm(r‘,k2)+
c;ZNenm(r,k2)®Nenm(r',kz)]
(15)
where
Mgnm(k)_‘v{wgnm(k)r] (16)
Nenm(k)zklAVxAVx[l//enm(k)r}, (17)
with
v, ()= J, (kr)Py (cos@)((::)(m(p), (18)
that
=,/g(a))cg, (19)

and j, (kr) is spherical Bessel function of the

first kind; P,"(cos®) is associated Legendre

polynomial; For the rather lengthy expressions
of the generalized reflection coefficients

Aﬁ,f(N),Cff(N) , see [13].

Now the Green's function of the system is
calculated and according to the previous
section we can write quantized
electromagnetic field operators inside the
quantum dot and in free space:

E;S (r,a)) = i,uOJ.d oGy (r,r',a))]k,(r’,a)), (20)

é;s(r,a)):(ia))JVxE;s(r,a)) (21)
In the next section we will consider the effects
of the quantization on the spontaneous
emission of a two level atom centered in a
semiconductor quantum dot.
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111. SPONTANEOUS EMISSION OF AN
ExcITED ATOM DOPED INSIDE A
SEMICONDUCTOR QUANTUM DoOT

The electric and magnetic field operators, (20)
and (21), can be expressed in terms of vector

A and scalar ¢ potentials. In the following
we will work with Coulomb Gauge. This
gauge condition implies that both the
transverse and longitudinal electric fields are
obtained from the vector potential

Ar) =AY (r)+A(r), (22)

A1) (B0, G(r ) (i) 29

Now, we consider the case which there is an
external (two-level) atomic system in the
position r,. The atom is located inside a QD

and interacts with the quantized field inside
the QD. Treating its interaction with
electromagnetic field in dipole and rotating
wave approximations, the Hamiltonian of the
total system can be given by

2

I:I=Id Idwhwarw ra) Z

[i @, A, A (1, )-dyy +H c] (24)

Here the atomic operators AM, =la)a'| are
introduced, with | &) s being the atomic energy
eigenstates (a =1,2). The energies of the two
states are assumed to be %@ and ho,
(ho, >hae,), ©,=0,-0on and aﬂ are the
atomic transition frequency and dipole

moment of the atom, respectively. Note that in

the interaction term in Eq.(24), the A’ term
and the counter-rotating terms are dropped.
Following the approach introduced in [6], for
the macroscopic dielectric medium, decay rate
of an excited atom can be written as:

Za)A/uk /Uk IMR 22 (
he,C?

(25)

Fy' @),
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where uo=(dy), , o, =, and
Gy (ra.1y, 0, ) is given in relation (13) by
replacing r and r’ with r,. In the coincidence
limit (r >r —0) only the TM wave vector
Debye potential Ngm(k) and Ngn(k)

contribute to R (r,,r,,®, ) and we find that

iw

*" bac

Rez (6 tas @), (C& (@) S (26)

Hence, for » = w,, we obtain the decay rate
in the form of

Y= [14— Re(Cﬁ2 (o, ))H:J, (27)

where the generalized reflection coefficient
(C¥(w)) _ isgiven by

TV RV
22 —
(€)= 5 @9)
with
v _ Ko (3,00, -03,1,) (29)
T Kk,3,0n, — k03,0,
v _ k,h,0n, —knon,
" k03,0, -k 3,00, (30)
-I-';/1 - k2(532h2 _Szﬁhz), (31)
k,03,h, —k,3,0m,
and
3 :jn(kfR)’ (32)
n, =h®(k,R), (33)
dloi
o3, _1 [Pc:n(p)] ' (34)
p N N
d| ph? (p
on, =1 A (o)) | (35)
p dp
p:kfR

and R being the radius of quantum dot.
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The decay rate of an excited atom as a
function of the atomic transition frequency
oo, and r=A/R has been depicted in

Fig.2, according to the Eq.(27).

As is clear, the less cavity radius R, the more
maximum value of spontaneous decay rate,
which occurs near the medium resonance.

In Fig. 3, we have plotted the atom decay rate
/T, doped in the center of the quantum dot

(solid line) and the atom decay rate 77, /7, of
an atom in the spherical cavity of radius R, in

a surrounding medium with the single
resonance model permittivity

&(w) = a)i/{wg —® —i ya)} , (dashed line)*.

These decay rates are plotted as a function of
their atomic transition frequency with
R=R, =0.021. As is seen in this plot, 77, /I,
exceeds 77/I, while two decay rates have the

same behavior near the resonance of their
mediums, qualitatively.

Fig. 2. The spontaneous decay rate 77/7,
Eq. (27), of a two level atom at the center of a

and the
atomic transition frequency @, near the first

guantum dot as a function of r =1/R

exciton resonance at @, , using permittivity (11)
for y =0.2a,

R =0.021, F =66.

Y

! It has been depicted according to Green's function
derived in Ref. [6]
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Fig. 3. The spontaneous decay rate 77/, Eq.

(27), of a two level atom at the center of a quantum
dot as a function of the atomic transition frequency

w, near the first exciton resonance at @, , using
permittivity of Eq. (11) for y =0.2@, , R =0.024
and F =66 (solid line). The spontaneous decay
rate 1,/l, of a two level atom inside a
microcavity in the bulk as a function of the atomic
transition frequency @, near the medium
resonance @,, using a model permittivity of
Lorentz type and for »=0.5@¢, R=0.024,

w, = 0.46w, (dashed line).

As another interesting aspect, an excited atom
in an absorbing medium undergoes both
radiative and nonradiative damping, and in
dense media nonradiative decay can be much
faster than radiative one. Since the
radiationless decay typically happens at
longitudinal frequency , , one observes, for
sufficiently small values of » and R (R,), a

shift of the maximum of the decay rate from
, to longitudinal frequency

ex

(o), =\’ +(o, )ezx for r/r, and from «,
to longitudinal frequency @, =, e; +w; for
r,/r, (e,), and @, to longitudinal

frequency o =, o} +o; for I,/1, ((o,),
and o, are plasma frequency related to
quantum dot and bulk, respectively), which
(@), [®, > @ lo,. By introducing (e,) asa

plasma frequency of quantum dot, and by
comparing with a plasma frequency of a bulk,

we can conclude that (@, ). /@, > @,/a,.
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IV. CONCLUSION

In this paper the quantization of
electromagnetic fields in the presence of a
semiconductor quantum dot is discussed. Our
approach is based on the Green's function that
is applicable only for Kramers-Kronig
dielectrics. In this approach by calculating the
Green's function of the wave equation that its
sources are considered as noises due to
absorption in medium, field operators are
obtained. Then we use the Green's function of
the system to calculate the spontaneous
emission of a two level atom doped in the
center of a quantum dot. The results show that
the maximum value of spontaneous decay rate
occurs near the medium resonance and
increases by decreasing value of quantum dot
radius. If one, wrongly, uses simple Lorentz
model for permittivity of quantum dot,
negative values of decay rate will be appeared
which is not correct.

In comparison with decay rate of an atom
inside a spherical microcavity in the bulk [6],
it is shown that the decay rate of spontaneous
emission for a two level atom doped in the
center of a semiconductor quantum dot is
smaller than the decay rate of an atom in the
center of the cavity inside a bulk but it is yet
much greeter than I7,. Also, it is shown that
the shift of the maximum of the decay rate

from transition frequency of the quantum dot
is larger than the same one for a bulk. By

introducing (, ) as a plasma frequency of

nanostructure quantum dot it means that
(a)p )ex la, >w,la,.
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