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Abstract— In this paper, we present a
comparative numerical analysis to determine
the refractive index of photonic crystal fibers
(PCFs) by using FDFD method and used the
results to evaluate the confinement losses of
PCFs by considering the effects of air-hole rings
in the cladding.

It is shown that by increasing the wavelength,
the imaginary part of refraction index rises,
resulting in increase of confinement losses
nearly by order of 10. In lower wavelengths
over the range of 0.2 to 1 pm, these losses were
shown to be negligible. The obtained results
show that as the number of air-hole ring in the
cladding increases, the confinement losses over
wavelengths would reduce. To show the effect of
air-hole rings on confinement losses in PCFs,
the FDFD method yielded accurate results that
agree well with results of FEM method and
source—model technique reported by others.
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I.INTRODUCTION

Photonic crystal fibers (PCFs) are all-silica
fibers that guide light by means of air-holes
placed in the entire fiber length in the cladding
[1]. The propagating modes of such fibers are
leaky because the core refractive index is the
same as the index beyond the finite cladding
region. In addition to usual loss mechanisms
as that of conventional fibers, there is loss
mechanism peculiar to PCFs, known as
confinement loss, which is due to presence of
air-holes in their cladding [2-7]. The cladding
of a PCF is usually comprised of hexagonally-
packed rings of holes, and when the air-hole

spacing A becomes comparable to the
wavelength, several rings of holes are required
to reduce the confinement loss to a practical
value [8-9]. The presence of air-holes in the
cladding causes the average refractive index in
this region to reduce. Therefore, in order to
optimize the design of PCFs for a minimum
confinement loss, it is necessary to study the
loss characteristics for an optimum PCF
structure [10, 11].

Generally, for analysis of PCFs, due to their
complex structures, numerical methods are
used [I1, 12]. To study the influence of
number of air-hole rings on confinement loss
of PCFs, we utilized fully vectorial finite-
difference frequency domain (FDFD) method.
In this method PCFs are considered with a
finite cladding region of circular holes and
full-vector modal calculations are performed.
This method gives the complex propagation
constant from which imaginary part is used for
calculation of the confinement losses.

II. THE ANALYSIS

Various methods are utilized for analysis of
photonic crystal fibers (PCFs). In all the
solving methods, the Maxwell's equations are
solved and the electric (E) and magnetic (H)
fields are resolved into longitudinal
components in Cartesian coordinate as
follows:

&(X,y,z,t)zat(x,y)'i'&z (X,y)exp[—j(mt _BZ )]
(1

where 3 indicates the propagation constant and
¢ is either E or H field. By replacing (1) in
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Maxwell's equations, we obtain Helmholtz
vectorial equations as:

(Vi+ ~B*)E, =V, (E, -V, Inn?)
(V2+k2n2 JH, =(V, xH,)VxV, Inn’
(Vi+kin®=B*)E, = jBE,.V, Inn’

(Vi +kin?=p*)H, =(V,H, +jpH,)-V, lnn’

@)
The above equations convert into eigen value
problems for transmitting components of E
and H fields. When the relative refractive
index difference between core and cladding is
small, the right hand side of (2) is negligible
and can be approximated to zero, which is
scalar approximation. Therefore, all the
equations in (2) convert into one equation for
either E or H field [11].

One point to note is that if the relative
refractive index between core and cladding of
PCF is high, the scalar approximation can be
used to predict the propagation characteristics.
Thus, a fully vectorial method is required for
the analysis of PCFs. In this category, plane
wave method (PWM), localized function
method (LFM), finite difference time domain
(FDTD) method, finite difference frequency
domain (FDFD) method, multipole method
(MPM) are relatively accurate methods for the
analysis of PCFs [11].

In PWM, the magnetic field is expanded into
plane waves and the core of PCF is assumed a
solid cylindrical structure surrounded by
periodic air-holes placed infinitely in the
cladding region. Since, practically, the
numbers of air-holes in the cladding are
limited; this method is not suitable for the
analysis of PCF [12]. For solving waveguide
problems, LFM is used numerically as well as
vectorially. In this method, the orthogonal
functions such as sinusoidal, Lagurre-Gaussian
(for 1D waveguides), Hermite-Gaussian (for
2D waveguides), are utilized. By applying
periodic air-holes condition, the unknown
modes are approximated by localized modes
and are resolved into plane wave components,
resulting in eigen value equation [13].
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The FEM method is a accurate tool for solving
waveguides problems which is normally based
on simple solution of Helmholtz equations in
frequency domain by dividing air-holes into
triple cells [11]. This method, in spite of being
accurate, has a complex algorithm that is hard
to solve. In FDM method, the Yee mesh is
utilized for solving electromagnetic problems
in either time domain (FDTD) or frequency
domain (FDFD). In comparison with other
methods, FDM is more accurate and simpler.

Another simple and less accurate method is
effective index method (EIM) in which an
averaged refractive index of cladding with
periodic air-hole is considered and modeled as
an equivalent conventional step index single-
mode fiber. In this method, by assuming air-
hole as a unit cell, the scalar wave equation is
solved to obtain mode field [14].

In FDTD method, the eigen frequency is
solved for the given propagation constant. By
FDFD method, which is based on direct
solution of either Maxwell's or Helmholtz's
equations, the attenuation of PCF can be
determined. This method does not require
second differentiation and thus six field
components can be determined separately.

A. FDFD method

To solve Maxwell's equations by FDFD
method, we utilize Yee mesh, as shown in Fig.
1 [15]. Let the time dependence of the field be

represented as exp[ (Bz - )] Dividing E

by z,=.4/e, in Maxwell's equations
(VxE=-0B/ot and VxH=¢g0E/dt), we
obtain:
—ik,,eE, = oH, y
. . oH
—ik,e, E, =ipH, —— 3
08r y B X 6X ()
oH
ik,g, E, =—~ _H,
OX oy
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Fig. 1. Yee's mesh [15].
By using the following notations:
er(jsl)z[gr(jal)+8r(jal _1)]/2
ey (1,0 =[e.(J.D+e,(j.h)—¢.(j —-1,1]/2 o

Srz(jal):[gr(jal)—"_sr(j _LI _1)
+e,(j,1 =D +g (j —1,1)]/4

the expressions (3) to (6) can be simplified as:
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H., o -ipl U, |E,
iko[H, [=|ipl 0 U, |lE, (8)
H, | |[-U, U, o |E,

ry y
0 e¢,]|E,
o -ipl v, H,] @
ipl 0 v, |H,
v, Vv, 0 ||H,

where | is a square unit matrix, and &u, &y, €1z
are diagonal matrices determined by (7). The
square matrices Uy, Uy, Vi, and Vyare
evaluated under boundary condition. For
example, if the values of window edge
components in Yee's mesh tend to zero, the
results are obtained as following matrices [15]:

-1 1
11
szi
AX
11
- _1_
-1 1 i
-1
U =L . B (10)
y Ay '
-1
— 1_
s )
11
-1
VX:L
AX
-1 1
| - _1 1_
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Vo=——o!| (11)

-1 1

By some algebraic operations on (10) and
(11), the eigenvalue equation for transverse
electric field components will result as:

Ex Pxx ny Ex 2 Ex 12
R A N Y S

where the following notations are used:

XX XxX-rz-y" X X~rz- X
(8 +k,V U )
P, =—kU, eV VU, +(kol +U eV, )x
(e +k, UV, )

P, =—k;U eV VU +(k|+u3\/)

(13)
Py =U,..V, (g, +k,V,U, )=k, x

Xy xe“rz" y

(ot +U,&V, VU,
P, =U, eV, (er +k,V, U )—k’zx

(kol +U eV, VU,

y-mzoy

where Eyy and Hyy are the x and y components
of electric and magnetic fields, respectively
[16]. In a similar procedure, the corresponding
magnetic field equations can be derived as:

Hel 1Qu Qu ||Hy | .| Hy
Q{HY}:[QW nyj||:Hy:|_B |:Hy:| (14)

The advantage of this approximation is that the
H; and E; components can be determined
separately and other E and H field components
are obtained by (8) and (9). If material is
neglected, the value of & will be real and the
matrix P converts into a real sparse matrix
[15]. By applying boundary condition and
solving (10), we calculate the propagation
constant . By using the relations n.s=p/ko and
ko=2m/Aho, where Ay is the free space
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wavelength, the effective refractive index is
determined. In our analysis we used a PCF
with a hexagonally-packed rings of holes as
shown in Fig. 2, where A is the air-hole
spacing and d is the air-hole diameter.
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Fig. 2. PCF with a hexagonally-packed rings of
holes.

The confinement loss of PCF can directly be
evaluated by imaginary part of the effective
refractive index obtained in FDFD method,
i.e., in terms of dB/m is defined as [17]:

20 2m
a, =————Im(n)-10’° 15
L 11’1 (1 0) 7\' ( eff ) ( )
where the wavelength A is in terms of
nanometer.

ITII.NUMERICAL RESULTS

The effective refractive index for different
PCF structures can be evaluated by FDFD
method. In Fig. 3, we plotted the variations of
effective refractive index as a function of
number of grids selected in Yee's mesh at
A=1.55 pum for A=2.3 um, d=2 pm, and
Ng=1.42. The calculating window in Yee's
mesh was set to 8x8 pm.

For the given parameters values as above, we
illustrated the effective index variation as a
function of wavelength for number of grids of
40. We observe that as the wavelength
increases, the effective index will lower down.
In Fig. 4, with the same parameters values, the
variation of effective refractive index is
plotted with respect to wavelengths from 0.2
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to 2 um range. In Table 1, the values of
effective refractive indices obtained by various
methods are compared for A=2.3 um at A=1.55
um. Among the results of compared methods,
the results of MPM and FDFD methods almost
tally with each other.
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Fig. 3. Variation of effective refractive index vs.
grid numbers.
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Fig. 4. Spectrum of the effective refractive
index.

Table I. Comparison of effective indices obtained by
different methods

MPM PWM LFM EIM
[11] [12] [13] [14]
Nefr 1.4354 1.4353 1.4270 1.4230 1.4286

Methods FDFD

In Fig. 5, we have shown the real and
imaginary parts of the refractive index versus
wavelength. By increasing the wavelength, the
imaginary part of refractive index rises while
the real part lowers. In other word, when the
wavelength increases, more fraction of light
energy is confined in the cladding, thus
resulting in more propagation loss, which is
termed as confinement losses.
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Fig. 5. Real and imaginary parts of the effective
refractive indices.

In Fig. 6, the confinement losses for one ring
of air-hole as a function of wavelength is
depicted for d/A= 0.8. In shorter wavelengths
over the range of 0.2 to 1 um, this loss is
negligible, but above this range, confinement
losses increase rapidly, by order of 10. This
result agrees well with that of [18] and [19],
where FEM method was used. In [18], the
confinement losses of a PCF with one air-hole
ring in its cladding for A=2.3 um at A=1.55
um, was of the order of 10* dB/m.
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Fig. 6. Confinement losses spectrum for
d/A=0.8.

By increasing the number of air-hole rings in
the cladding of PCF, the confinement losses
would decrease in such a way that it can be
neglected in relative to other loss mechanisms
in the PCF. In Fig. 7, we plotted the variations
of confinement losses versus the ratio d/A for
various number of air-holes in the cladding for
A= 23 um at 1.55 pum. We observe that
confinement losses have decreasing nature
with respect to the numbers air-hole rings. The
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reason for reduction of confinement losses is
that when the number of air-holes in the
cladding of PCF increases, the effective
refractive index of cladding will decrease,
making the relative index difference between
core and cladding to increase. As a result,
more light energy will concentrate into core
region, which in turn causes the confinement
loss to decrease. Under this condition, mode
guiding in PCF is carried out by total internal
reflection rather than photonic band gap
phenomenon.
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Fig. 7. Confinement loss versus d/A for different
number of air-hole rings.

IV.CONCLUSION

A comparative numerical analysis, based on
FDFD method, is presented to determine the
refractive index of PCF and the obtained
results are used to evaluate the confinement
losses of PCFs by considering the effects of
air-hole rings in the cladding.

Although in analytical effective index method
sufficient design information can be obtained,
the numerical methods are more accurate. The
localized function method, which is based on
direction solution of Maxwell's equations, the
evaluation process leads to some complex
integral equations. As well, the FEM method,
in spite of being a accurate method, has the
same problem complexity. The FDM method
has the same accuracy as that of the FEM with
a simpler mathematical operations. The
frequency domain version of FDM, i.e., FDFD
method has the advantage of direct solutions
of Maxwell's or Helmholtz's equations to
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determine the losses in PCF. Moreover, in
FDFD method performing second
differentiations is not required and by using
sparse technique the calculation time can be
reduced.

On confinement losses analysis of PCFs. it is
shown that by increasing the wavelength, the
imaginary part of refraction index rises,
resulting in increase of confinement losses
nearly by order of 10. In lower wavelengths
over the range of 0.2 to 1 um, these losses
were shown to be negligible, but above this
range, confinement losses increases rapidly.

The variation of confinement losses over
wavelengths for different number of air-hole
rings have shown that as the number of air-
holes rings increases, the confinement losses
would reduce. In analyzing the effect of air-
hole rings on confinement losses in PCFs, the
FDFD method yielded accurate results that
agree well with results of FEM method and
source—model technique reported by others.
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