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Abstract— In this paper, we present a 
comparative numerical analysis to determine 
the refractive index of photonic crystal fibers 
(PCFs) by using FDFD method and used the 
results to evaluate the confinement losses of 
PCFs by considering the effects of air-hole rings 
in the cladding. 

It is shown that by increasing the wavelength, 
the imaginary part of refraction index rises, 
resulting in increase of confinement losses 
nearly by order of 10. In lower wavelengths 
over the range of 0.2 to 1 μm, these losses were 
shown to be negligible. The obtained results 
show that as the number of air-hole ring in the 
cladding increases, the confinement losses over 
wavelengths would reduce. To show the effect of 
air-hole rings on confinement losses in PCFs, 
the FDFD method yielded accurate results that 
agree well with results of FEM method and 
source–model technique reported by others. 

KEYWORDS: air-hole rings, confinement 
loss, finite difference frequency domain, 
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I. INTRODUCTION 
Photonic crystal fibers (PCFs) are all-silica 
fibers that guide light by means of air-holes 
placed in the entire fiber length in the cladding 
[1]. The propagating modes of such fibers are 
leaky because the core refractive index is the 
same as the index beyond the finite cladding 
region. In addition to usual loss mechanisms 
as that of conventional fibers, there is loss 
mechanism peculiar to PCFs, known as 
confinement loss, which is due to presence of 
air-holes in their cladding [2-7]. The cladding 
of a PCF is usually comprised of hexagonally-
packed rings of holes, and when the air-hole 

spacing Λ becomes comparable to the 
wavelength, several rings of holes are required 
to reduce the confinement loss to a practical 
value [8-9]. The presence of air-holes in the 
cladding causes the average refractive index in 
this region to reduce. Therefore, in order to 
optimize the design of PCFs for a minimum 
confinement loss, it is necessary to study the 
loss characteristics for an optimum PCF 
structure [10, 11].  

Generally, for analysis of PCFs, due to their 
complex structures, numerical methods are 
used [11, 12]. To study the influence of 
number of air-hole rings on confinement loss 
of PCFs, we utilized fully vectorial finite-
difference frequency domain (FDFD) method. 
In this method PCFs are considered with a 
finite cladding region of circular holes and 
full-vector modal calculations are performed. 
This method gives the complex propagation 
constant from which imaginary part is used for 
calculation of the confinement losses. 

II. THE ANALYSIS 
Various methods are utilized for analysis of 
photonic crystal fibers (PCFs). In all the 
solving methods, the Maxwell's equations are 
solved and the electric (E) and magnetic (H) 
fields are resolved into longitudinal 
components in Cartesian coordinate as 
follows: 

( , , , ) ( , ) ( , )exp[ ( )]t zx y z t x y x y j t zξ = ξ + ξ − ω −β
 (1) 

where β indicates the propagation constant and 
ξ is either E or H field. By replacing (1) in 
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Maxwell's equations, we obtain Helmholtz 
vectorial equations as: 
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.

 
 (2) 
The above equations convert into eigen value 
problems for transmitting components of E 
and H fields. When the relative refractive 
index difference between core and cladding is 
small, the right hand side of (2) is negligible 
and can be approximated to zero, which is 
scalar approximation. Therefore, all the 
equations in (2) convert into one equation for 
either E or H field [11]. 

One point to note is that if the relative 
refractive index between core and cladding of 
PCF is high, the scalar approximation can be 
used to predict the propagation characteristics. 
Thus, a fully vectorial method is required for 
the analysis of PCFs. In this category, plane 
wave method (PWM), localized function 
method (LFM), finite difference time domain 
(FDTD) method, finite difference frequency 
domain (FDFD) method, multipole method 
(MPM) are relatively accurate methods for the 
analysis of PCFs [11]. 

In PWM, the magnetic field is expanded into 
plane waves and the core of PCF is assumed a 
solid cylindrical structure surrounded by 
periodic air-holes placed infinitely in the 
cladding region. Since, practically, the 
numbers of air-holes in the cladding are 
limited; this method is not suitable for the 
analysis of PCF [12]. For solving waveguide 
problems, LFM is used numerically as well as 
vectorially. In this method, the orthogonal 
functions such as sinusoidal, Lagurre-Gaussian 
(for 1D waveguides), Hermite-Gaussian (for 
2D waveguides), are utilized. By applying 
periodic air-holes condition, the unknown 
modes are approximated by localized modes 
and are resolved into plane wave components, 
resulting in eigen value equation [13]. 

The FEM method is a accurate tool for solving 
waveguides problems which is normally based 
on simple solution of Helmholtz equations in 
frequency domain by dividing air-holes into 
triple cells [11]. This method, in spite of being 
accurate, has a complex algorithm that is hard 
to solve. In FDM method, the Yee mesh is 
utilized for solving electromagnetic problems 
in either time domain (FDTD) or frequency 
domain (FDFD). In comparison with other 
methods, FDM is more accurate and simpler. 

Another simple and less accurate method is 
effective index method (EIM) in which an 
averaged refractive index of cladding with 
periodic air-hole is considered and modeled as 
an equivalent conventional step index single-
mode fiber. In this method, by assuming air-
hole as a unit cell, the scalar wave equation is 
solved to obtain mode field [14]. 

In FDTD method, the eigen frequency is 
solved for the given propagation constant. By 
FDFD method, which is based on direct 
solution of either Maxwell's or Helmholtz's 
equations, the attenuation of PCF can be 
determined. This method does not require 
second differentiation and thus six field 
components can be determined separately. 

A. FDFD method 
To solve Maxwell's equations by FDFD 
method, we utilize Yee mesh, as shown in Fig. 
1 [15]. Let the time dependence of the field be 
represented as ( )exp i z tβ ω⎡ − ⎤⎣ ⎦ . Dividing E 

by 0 0 0z μ ε=  in Maxwell's equations 
( )andt tε∇× = −∂ ∂ ∇× = ∂ ∂E B H E , we 
obtain: 

0
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Fig. 1. Yee's mesh [15]. 

By using the following notations: 
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 (7) 

the expressions (3) to (6) can be simplified as: 
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 (9) 

where I is a square unit matrix, and rxε , εry,  ε rz 
are diagonal matrices determined by (7). The 
square matrices Ux, Uy, Vx, and Vy are 
evaluated under boundary condition. For 
example, if the values of window edge 
components in Yee's mesh tend to zero, the 
results are obtained as following matrices [15]: 
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By some algebraic operations on (10) and 
(11), the eigenvalue equation for transverse 
electric field components will result as: 

2x xx xy x x
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⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (12) 

where the following notations are used: 

( )
( )
( )
( )

( )
( )

( )
( )

2 1 2 1
0 0

2
0

2 1 2 1
0 0

2
0

1 2 2
0 0

2 1
0

1 2 2
0 0

2 1
0

xx x rz y x y x rz x

rx y y

yy y rz x y x y rz y

ry x x

xy x rz y ry x x

x rz x y x

yx y rz x rx y y

y rz y x y

P k U V V U k I U V

k V U

P k U V V U k I U V

k U V

P U V k V U k

k I U V V U

P U V k V U k

k I U V V U

− − −

−

− −

−

− − −
ε

−

− − −

−

= − ε + + ε ×

ε +

= − ε + + ε ×

ε +

= ε ε + − ×

+ ε

= ε ε + − ×

+ ε

 (13) 

where Ex,y and Hx,y are the x and y components 
of electric and magnetic fields, respectively 
[16]. In a similar procedure, the corresponding 
magnetic field equations can be derived as: 

2x xx yx xx

y yx yyyy

H Q Q HH
Q

H Q Q HH

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = β⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

 (14) 

The advantage of this approximation is that the 
Ht and Et components can be determined 
separately and other E and H field components 
are obtained by (8) and (9). If material is 
neglected, the value of εr will be real and the 
matrix P converts into a real sparse matrix 
[15]. By applying boundary condition and 
solving (10), we calculate the propagation 
constant β. By using the relations neff=β/k0 and 
k0=2π/λ0, where λ0 is the free space 

wavelength, the effective refractive index is 
determined. In our analysis we used a PCF 
with a hexagonally-packed rings of holes as 
shown in Fig. 2, where Λ is the air-hole 
spacing and d is the air-hole diameter.  

 
Fig. 2. PCF with a hexagonally-packed rings of 
holes. 

The confinement loss of PCF can directly be 
evaluated by imaginary part of the effective 
refractive index obtained in FDFD method, 
i.e., in terms of dB/m is defined as [17]: 

( ) ( ) 9
eff

20 2 Im 10
ln 10L nπ

α = ⋅
λ

 (15) 

where the wavelength λ is in terms of 
nanometer. 

III. NUMERICAL RESULTS 
The effective refractive index for different 
PCF structures can be evaluated by FDFD 
method. In Fig. 3, we plotted the variations of 
effective refractive index as a function of 
number of grids selected in Yee's mesh at 
λ=1.55 µm for Λ=2.3 µm, d=2 µm, and 
ncl=1.42. The calculating window in Yee's 
mesh was set to 8×8 µm.  

For the given parameters values as above, we 
illustrated the effective index variation as a 
function of wavelength for number of grids of 
40. We observe that as the wavelength 
increases, the effective index will lower down. 
In Fig. 4, with the same parameters values, the 
variation of effective refractive index is 
plotted with respect to wavelengths from 0.2 
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to 2 µm range. In Table 1, the values of 
effective refractive indices obtained by various 
methods are compared for Λ=2.3 µm at λ=1.55 
µm. Among the results of compared methods, 
the results of MPM and FDFD methods almost 
tally with each other. 

 
Fig. 3. Variation of effective refractive index vs. 
grid numbers. 

 
Fig. 4. Spectrum of the effective refractive 
index.  

Table I. Comparison of effective indices obtained by 
different methods 

Methods FDFD 
MPM 
[11] 

PWM 
[12] 

LFM 
[13] 

EIM 
[14] 

neff 1.4354 1.4353 1.4270 1.4230 1.4286 
 

In Fig. 5, we have shown the real and 
imaginary parts of the refractive index versus 
wavelength. By increasing the wavelength, the 
imaginary part of refractive index rises while 
the real part lowers. In other word, when the 
wavelength increases, more fraction of light 
energy is confined in the cladding, thus 
resulting in more propagation loss, which is 
termed as confinement losses.  

 
Fig. 5. Real and imaginary parts of the effective 
refractive indices. 

In Fig. 6, the confinement losses for one ring 
of air-hole as a function of wavelength is 
depicted for d/Λ= 0.8. In shorter wavelengths 
over the range of 0.2 to 1 μm, this loss is 
negligible, but above this range, confinement 
losses increase rapidly, by order of 10. This 
result agrees well with that of [18] and [19], 
where FEM method was used. In [18], the 
confinement losses of a PCF with one air-hole 
ring in its cladding for Λ=2.3 µm at λ=1.55 
µm, was of the order of 104 dB/m. 

 
Fig. 6. Confinement losses spectrum for 
d/Λ=0.8. 

By increasing the number of air-hole rings in 
the cladding of PCF, the confinement losses 
would decrease in such a way that it can be 
neglected in relative to other loss mechanisms 
in the PCF. In Fig. 7, we plotted the variations 
of confinement losses versus the ratio d/Λ for 
various number of air-holes in the cladding for 
Λ= 2.3 μm at 1.55 μm. We observe that 
confinement losses have decreasing nature 
with respect to the numbers air-hole rings. The 
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reason for reduction of confinement losses is 
that when the number of air-holes in the 
cladding of PCF increases, the effective 
refractive index of cladding will decrease, 
making the relative index difference between 
core and cladding to increase. As a result, 
more light energy will concentrate into core 
region, which in turn causes the confinement 
loss to decrease. Under this condition, mode 
guiding in PCF is carried out by total internal 
reflection rather than photonic band gap 
phenomenon. 

 
Fig. 7. Confinement loss versus d/Λ for different 
number of air-hole rings. 

IV. CONCLUSION 
A comparative numerical analysis, based on 
FDFD method, is presented to determine the 
refractive index of PCF and the obtained 
results are used to evaluate the confinement 
losses of PCFs by considering the effects of 
air-hole rings in the cladding. 

Although in analytical effective index method 
sufficient design information can be obtained, 
the numerical methods are more accurate. The 
localized function method, which is based on 
direction solution of Maxwell's equations, the 
evaluation process leads to some complex 
integral equations. As well, the FEM method, 
in spite of being a accurate method, has the 
same problem complexity. The FDM method 
has the same accuracy as that of the FEM with 
a simpler mathematical operations. The 
frequency domain version of FDM, i.e., FDFD 
method has the advantage of direct solutions 
of Maxwell's or Helmholtz's equations to 

determine the losses in PCF. Moreover, in 
FDFD method performing second 
differentiations is not required and by using 
sparse technique the calculation time can be 
reduced.  

On confinement losses analysis of PCFs. it is 
shown that by increasing the wavelength, the 
imaginary part of refraction index rises, 
resulting in increase of confinement losses 
nearly by order of 10. In lower wavelengths 
over the range of 0.2 to 1 μm, these losses 
were shown to be negligible, but above this 
range, confinement losses increases rapidly. 

The variation of confinement losses over 
wavelengths for different number of air-hole 
rings have shown that as the number of air-
holes rings increases, the confinement losses 
would reduce. In analyzing the effect of air-
hole rings on confinement losses in PCFs, the 
FDFD method yielded accurate results that 
agree well with results of FEM method and 
source–model technique reported by others. 
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