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ABSTRACT— In this paper, we have investigated 
the effects of self-fields on gain in a helical 
wiggler free electron laser with axial magnetic 
field and ion-channel guiding. The self-electric 
and self-magnetic fields of a relativistic electron 
beam passing through a helical wiggler are 
analyzed. The electron trajectories and the 
small signal gain are derived. Numerical 
investigation is shown that for group I orbits, 
gain decrement is obtained relative to the 
absence of the self-fields, while for group II 
orbit gain enhancement is obtained. 
 
Keywords: Free-electron laser, self-fields, ion-
channel, axial magnetic field, gain 

I. INTRODUCTION 
A Raman free-electron laser (FEL) produces 
coherent radiation by passage of a cold intense 
relativistic electron beam through a static 
magnetic (wiggler) field which is spatially 
periodic along the beam axis. In Raman 
regime, due to the high density and low energy 
of the electron beam, an axial magnetic field 
generated by current in a solenoid is usually 
employed to focus on the beam [1-4]. Also the 
ion-channel guiding is used to focus the 
electrons against the self-repulsive 
electrostatic force generated by the beam itself 
[5-9].  

In Raman regime, equilibrium self-electric and 
self-magnetic fields, due to the charge and 
current densities of the beam, can have 

considerable effects on the equilibrium orbits. 
It has been shown that self-field can induce 
chaos in the single-particle trajectories [10]. 
The effects of self-fields on the stability of 
equilibrium trajectories and gain were studied 
in a FEL with a one-dimensional helical 
wiggler and axial magnetic field [11, 12] or 
ion-channel guiding [13-14]. 

In recent years, electron trajectories and gain 
in a planar and helical wiggler FEL with ion-
channel guiding and axial magnetic field were 
studied, detailed analysis of the stability and 
negative mass regimes were considered [15-
18]. Esmaeilzadeh and Willett have 
investigated the effects of self-fields on gain in 
a FEL with an idealized (one-dimensional) 
helical wiggler and axial magnetic field [19]. 
Also, Esmaeilzadeh et al. have investigated 
the electron orbits and gain in free electron 
laser with realizable helical wiggler in the 
present of ion channel guiding [20]. The 
purpose of this paper is to study the effects of 
the self-fields on gain in a FEL with ion-
channel guiding and axial magnetic field. In 
Section II, steady-state trajectories are 
obtained in the absence of self-fields. In 
Section III, self-fields are calculated using 
Poisson’s equation and Ampere’s law. 
Equilibrium orbits are found under the 
influence of self-fields. In Section 2.3, the 
derivation of the gain equation is presented. In 
Section 3, the numerical results are given. In 
Section 4, concluding remarks are given. 
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II. THEORY DETAILS 

A. Basic assumptions 

The evolution of the motion of a single 
electron in a FEL is governed by the 
relativistic Lorentz equation 

   



  zwi c

e
td

md
eBBvE

v
ˆ

1
0


, (1) 

where iE  is the transverse electrostatic field of 
an ion-channel and it can be written as 

 yxE ˆˆ2 yxne ii   , (2) 

and wB  is the idealized helical wiggler 
magnetic field and can be described by 

 zkzkB wwww sinˆcosˆ yxB  , (3) 

and 0B  is the axial static magnetic field. Here, 

wB  denotes the wiggler amplitude, 
 wwk 2  is the wiggler wave number, w  

is the wiggler wavelength (period), in  is the 
density of positive ions having charge e. The 
steady-state velocity of an electron moving in 
this field is 

 zyxv ˆsinˆcosˆ ||0 vzkzkv www  , (4) 

where ||v  is the component in the positive z 

direction and 

 ||0||
2

2
||

vkvk

vk
v

wwi

ww
w 





, (5) 

is the signed magnitude of the wiggler-induced 

transverse velocity.   2122 menii   , is the 
ion-channel frequency and cmBe ww ,0,0  , 

are the axial guide and wiggler magnetic field 
frequencies.  

B. Self-field calculation and steady-state 
orbits  

The self-electric and self-magnetic fields are 
induced by the steady-state charge density and 

current of the non-neutral electron beam. 
Solving Poisson’s equation 

   renrE
rr b

s
r 4

1 )( 



, (6) 

yields the self-electric field in the form, 

   yxrE ˆˆ2ˆ2 yxnerne bb
s   , (7) 

where bn  is the number density of the 

electrons.  

The self-magnetic field is determined by 
Ampere,s law,  

bc
JB

4
 , (8) 

where  zbb vne evJ ˆ||   is the beam current 

density and v  is the transverse velocity. In 
cylindrical coordinates  zr ,, , Ampere,s law 
may be written in the form,  
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where wvv  . The solution of Eqs. (9)-(11) 
can be obtained by using the methods used in 
reference 10 (or references 12 and 13). This 
yields  

   1
||

1
swss BBB  , (12) 

where 

 yxeB ˆˆ2ˆ2 |||| xy
c

v
ner

c

v
ne bbs    , (13) 
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and   2122 menbb   . The first term in Eq. 
(12) is due to axial velocity; the second term is 
due to the transverse velocity induced by the 
wiggler magnetic field. With inclusion of the 
self-magnetic field, the total magnetic field up 
to first-order correction, may be written as 

   

    ,ˆˆˆ2

ˆ

0
||1

0
11

zbw

zsw

Bxy
c

v
ne

B

eyxB

eBBB






 (15) 

where 
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is the first-order correction factor for the 
wiggler magnetic field.  

The equation of electron motion in the 
presence of self-fields may be written (in the 
scalar form): 
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The steady-state solution of Eqs. (17) and (18) 
may be expressed in the form, zkvv wwx cos  
and zkvv wwy sin , where 

 
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, (20) 

and constant||  vvz . Equation (20) describes 

the transverse velocity in the presence of the 
self-electric and first order self-magnetic field. 
Substituting new electron velocity components 
into Eq. (8), and using the method applied in 
reference 10 (or references 12 and 13), we 
obtain the wiggler-induced self-magnetic field 
up to second-order correction as  

   
wsw K BB 12  , (21) 

where 
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and   2122
|||| 1


 cv . Using Eq. (21), the total 

magnetic field up to second-order correction is 
given by  

      zbw Bxy
c

v
ne eyxBB ˆˆˆ2 0
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where  

   12 1  K . (24) 

This process may be continued to find the 
higher order terms. We can write  

   1 , 3,4,5,n n
sw wK n  B B  (25) 

where  

   11 , 2,3,4,n nK n      (26) 

The total wiggler-induced magnetic field 
becomes 

 
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n
sw

n
sw K BBB 
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lim , (27) 

where  
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If the absolute value of K  is less than one, 
then the series in Eq. (28) will converge to 
 K11 , and the last term in the right-hand 

side will goes to zero. In this case, Eq. (28) 
may be expressed in the form  
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Substituting Eq. (29) into Eq. (27) and using 
Eq. (22), the total wiggler-induced self-
magnetic field is given by  
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The transverse part of the steady-state helical 
trajectories of electrons, in the presence of 
self-fields, can be found as 

    ||0||
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1 vkvkcv
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wwbi

ww
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. (31)  

Equation (31) shows resonant enhancement in 
the magnitude of the transverse velocity when  

     01 ||0||
22

||
22  vkvkcv wwbi  , (32)  

Steady-state trajectories may be classified 
according to the type of guiding. There are 
three main categories: 

1. When the value of axial magnetic field is 
zero  00  ; that is, a FEL with a helical 
wiggler and an ion-channel guiding. In this 
type of guiding Eq. (31) becomes,  
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2. When the density of positive ions is zero 
 0i ; that is, a FEL with a helical wiggler 

and an axial magnetic field. In this type of 
guiding Eq. (36) becomes, 
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3. When both the ion-channel and the axial 
magnetic field are present; that is, a helical 
wiggler FEL with an ion-channel and an axial 
magnetic field. When both types of guiding are 
present, wv  is given by Eq. (31). This case 

contains three types: (a) two guiding 
frequencies are taken to be equal ( i0 ), (b) 
the ion-channel frequency is taken to be 
constant, (c) the axial magnetic field frequency 
is taken to be constant. 

C. Small signal gain  

Let electromagnetic radiation copropagate 
with the electron beam in the FEL interaction 
region, such as below 
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where   tzk rr ,  ckrr   is frequency, 

and rE  is the amplitude of the wave. The 
electron equation of motion in the presence of 
the electromagnetic radiation and self-fields 
can be written in scalar form 
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The last term in Eqs. (36) and (37), which 
represents the transverse optical force acting 
on the electron. Now, we consider radiation 
terms as a small external factor which 
produces small perturbation in the steady-state 
velocity components, 
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Then, rewrite Eqs. (36)–(38) to first order in 
perturbed quantities and their derivatives, 
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Now, multiply Eqs. (42) and (43) by 

00  x and 00  y , respectively, and add the 

results to deduce 
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0

3
000   

00 yyxx    , which can be obtained from 

Eq. (45), and 2
0

2
0

2
0

2
0 11   zyx , may be 

used in Eq. (46) to obtain 

   
 

 ,1

cos

cossin1

0

00

2
0

0

z

wwrzzzww

wywxz

zkck

zkzk

















 (47) 

Now the term  zkzk wxwy sincos    may be 

eliminated between Eqs. (44) and (47) to 
obtain 

   

  
  .cos

1

1

0

000

2
0

2
0

0













zkck

ck

ck

wzww

zwwrzwwz

wzzwwzw


 (48) 

This equation is an important result which 
relates   to z  in the presence of radiation. 
Now a relation for  can be derived as 
follows: 

   

 .cos

cos

0 







zk

zk
mc

eE

mc

e

wwr

ww
r

rEβ
 (49) 

Substitution of this value in Eq. (48) with 
some algebra will deduce z as 

   zkwwrzz cos . (50) 

Using a first-order approximation for 
tctvz ||||  , Eqs. (49) and (50) may be 

written in the following form: 

   twr cos0 , (51) 

   twrzz cos , (52) 

where   rwr vkk  || .  

The phase   in the above equation determines 
the initial position of the electron relative to 
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the optical wave. Averaging  over all phases 
yields 

0
2

1 2

0
  






 d . (53) 

Therefore, to first order there is no net transfer 
of power between the electron beam and the 
optical wave. The second-order correction will 
consist of accounting for the fact that as an 
individual electron (with a phase  ) gains or 
loses in energy, its position relative to the 
unperturbed position  tcz ||  is advanced or 

retarded. Therefore, the unperturbed position, 
tcz || , must be replaced by 

    tdtctctz
t

z  0||   (54) 

where     tdtt
t

zz  0    is the change of z  

relative to the unperturbed state. The 
substitution of z  in Eq. (54) will yield 

     coscossin|| 


 tt
cD

tctz  (55) 

where    01 zwrD  . Substitution of Eq. 
(55) in Eq. (49) will yield 

   
  


coscossin

cos 1
0


 

tt

Dt wrwr
 (56) 

where ckww  . Comparison of Eq. (56) with 

Eq. (51) reveals that the perturbed state 
consists of a phase slippage, 

   
,cos

cossin1


   ttDrw  (57) 

Since D is proportional to 1 and rE ,   can 
be made arbitrarily small. Therefore, 
expanding the cosine term in Eq. (55) for 

   leads to 

   
   .coscossin

sincos
1

0








 tt

tt

w

rwr
 (58) 

Averaging over phase   yields 

   tttwr
wr 


 sincos

20



  (59)  

Now, integrating Eq. (59) over the electron 
transit time through the wiggler interaction 
length yields the average change in   per 
electron: 

   ,
2

3

0

0

Tg
TD

dt

wr
wr

cLT z






 







 
 (60) 

where  

   
33

sincos22

T

TTT
Tg




 , (61) 

and where L  is the FEL interaction length.  

The change in radiation power in one transit is 

  2mc
e

I
P , (62) 

where 2
|| bb revnI   is the average electron 

beam current. By using Eqs. (60) and (62), 
under the assumption that the electrons are 
near resonance with the wave, i.e., 

  0||  rwr ckk  , the gain equation in 

the presence of the self-fields can be rewritten 
as  

 Tg
c

L

P

P
G wwbs 













 ||

2

3

||

2 


 , (63) 

where   422
rb ErcP  . 

In the limit eliminating self-fields, the 
maximum gain Eq. (63) reduces to 

 Tg
c

L
G wwbs 










 0||

2
0

3

0||

2
0 


 , (64) 

where 0w  and 0||  are the wiggler-induced 

transverse velocity and the axial velocity in the 
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absence self-fields, respectively. If i  and 0  
are both set equal to zero (eliminating the ion-
channel and the axial magnetic field), Eq. (63) 
reduces to 

 Tga
c

L
G wwb 








 0

2

3

0

2
0 


 , (65) 

where 2ckmeBa www   and 

  2122
0 1   wa . 

III.  NUMERICAL RESULTS  
A numerical study of the self-fields effects on 
gain in a helical wiggler free-electron laser 
with axial magnetic field and ion-channel 
guiding have been made. The parameters that 
are used in this section are 114.3  cmkw , 

312108  cmnb , and kGBw 1 . The Lorentz 
relativistic factor   was taken to be 30, and 
the normalized axial velocity ||  was taken to 

be close to 1. The FEL interaction length L  
was taken to be w100 . 

 
Fig. 1 The normalized gain  0sG G  (solid lines) 

and the gain ratio  0ss GG  (dotted lines) vs. 

the normalized axial magnetic field frequency that 
is equal to the ion-channel frequency, for group I 

orbits. The parameters are 114.3  cmkw , 
312108  cmnb , and kGBw 1 . 

Figure 1 shows the variation of the normalized 
gain  0GGs  (solid lines) and value of the 

ratio of gain in the presence of the self-fields 
to the gain in the absence of the self-fields 
 0ss GG  (dotted lines) versus either 

normalized guiding frequency with the two 
taken to be equal  ckck wwi 0 , for group I 
orbits. Fig. 1 shows that the normalized gain 
increases with increase the normalized guiding 
frequency. As shown in Fig. 1,   is less than 1 
and therefore the gain decrement is obtained 
due to the self-fields. Figure 2 shows the 
variation of the normalized gain  0GGs  
(solid lines) and the gain ratio  0ss GG  
(dotted lines) versus either normalized guiding 
frequency with the two taken to be 
equal  ckck wwi 0 , for group II orbits.  

 
Fig. 2 The normalized gain  0sG G  (solid lines) 

and the gain ratio  0  s sG G  (dotted lines) vs. 

the normalized axial magnetic field frequency that 
is equal to the ion-channel frequency, for group II 
orbits. The parameters are 13.14 wk cm , 

312108  cmnb , and kGBw 1 . 

Fig. 2 shows that the normalized gain 
decreases with increase the normalized 
guiding frequency. For group II orbits if 
  10  ckck wwi , the condition ||  close to 

1, as required for derivation of the gain 
equation, breaks down. For group II orbits 
because   is greater than 1, the gain 
enhancement is obtained due to the self-fields. 
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Figure 3. The normalized gain  0GGs  (solid 

lines) and the gain ratio  0ss GG  (dotted 

lines) vs. the normalized axial magnetic field 
frequency ckw0  in the presence of an ion-

channel, with 2.0ckwi , for group I orbits. 

The parameters are 114.3  cmkw , 
312108  cmnb , and kGBw 1 . 

 
Figure 4. The normalized gain  0GGs  (solid 

lines) and the gain ratio  0ss GG  (dotted 

lines) vs. the normalized axial magnetic field 
frequency 0 wk c  in the presence of an ion-

channel, with 2.0ckwi , for group II orbits. 

The parameters are 114.3  cmkw , 
312108  cmnb , and kGBw 1 . 

Fig. 3 shows the normalized gain  0GGs  
(solid lines) and the gain ratio  0ss GG  
(dotted lines) versus the normalized axial 
magnetic field frequency ckw0  in the 
presence of an ion-channel when it is held 

constant with 2.0ckwi , for group I orbits. 
Fig. 3 shows that   is less than 1 and the gain 
decreases with considering the self-fields. The 
normalized gain  0GGs  (solid lines) and the 
gain ratio  0ss GG  (dotted lines) versus the 
normalized axial magnetic field frequency 

ckw0  in the presence of an ion-channel 
when it is held constant with 2.0ckwi , for 
group II orbits, are shown in Fig. 4. 

 
Figure 5. The normalized gain  0GGs  (solid 

lines) and the gain ratio  0ss GG  (dotted 

lines) vs. the normalized ion-channel frequency 
ckwi  in the presence of an axial magnetic field, 

with 2.00  ckw , for group I orbits. The 

parameters are 114.3  cmkw , 
312108  cmnb , and kGBw 1 . 

Fig. 5 shows the normalized gain  0GGs  
(solid lines) and the gain ratio  0ss GG  
(dotted lines) versus the normalized ion-
channel frequency ckwi  in the presence of 
an axial magnetic field when it is held constant 
with 2.00  ckw , for group I orbits. For 
group II orbits, the normalized gain  0GGs  
(solid lines) and the gain ratio  0ss GG  
(dotted lines) versus the normalized ion-
channel frequency ckwi  in the presence of 
an axial magnetic field when it is held constant 
with 2.00  ckw , are shown in Fig. 6. It 
should be noted that the foregoing result has 
been shown that the Budker condition 
eliminates the group II orbit in a FEL with ion-
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channel guiding. While, when both the ion-
channel and the axial magnetic field are 
present, there are two groups of electron 
trajectories, because electron beam will be 
guided by the axial magnetic field.  

 
Figure 6. The normalized gain  0GGs  (solid 

lines) and the gain ratio  0ss GG  (dotted 

lines) vs. the normalized ion-channel frequency 
ckwi  in the presence of an axial magnetic field, 

with 2.00  ckw , for group II orbits. The 

parameters are 114.3  cmkw , 
312108  cmnb , and kGBw 1 . 

 

IV. CONCLUSION 
In this work, the effects of self-fields on gain 
in a helical wiggler free electron laser with 
axial magnetic field and ion-channel guiding is 
investigated. The self-electric field is derived 
from Poisson’s equation and the self-magnetic 
field is obtained from Ampere’s law by a self-
consistent method. A detailed analysis of 
electron interaction with radiation field in the 
presence of self-fields is presented.  

It should be noted that the wiggler-induced 
self-magnetic field decreases the effective 
wiggler magnetic field for group I orbits, 
whereas for group II orbits it increases the 
effective wiggler magnetic field. Therefore, 
we expect that in the presence of self-fields the 
gain decreases for group I orbits and increases 
for group II orbits. 

The results of the present one-dimensional 
analysis are valid for 1|| vvw . When wv is 

large the radial variation of the wiggler field 
can no longer be neglected and the present 
results are not valid. The radial variation of the 
wiggler field is also negligible for thin beams 
for which the beam radius is much smaller 
than the wiggler wavelength. It should be 
noted that in the limiting case 0i , our 

results are in agreement with Ref. 19, which 
investigates gain in a one-dimensional FEL 
with axial magnetic field. In the limiting case 

00  , our results are not in perfect 

agreement with Ref. 20 because, in Ref. 20 a 
more realistic (three-dimensional) helical 
wiggler is employed.  
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