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ABSTRACT— In the present work, we 
investigate the tunability of the magnetic 
response of a new structure. A lattice of 
periodically arranged close-packed square 
conducting rings has been studied for this 
purpose. Here, instead of enhancing the 
magnetic activity via resonance, like in split-
ring resonators, we concentrate on the analysis 
of the interactions between these rings. The core 
idea is to design an array with negligible 
capacity and to focus on inductive interactions 
between its building cells. In other words, in this 
structure, the enhancement of the microscopic 
process has been attained by the interaction of 
its building block, i.e. a collective feature has 
been considered. It is our goal to obtain a 
sizable magnetic response with this new 
approach. Our ultimate goal is to demonstrate 
that the relative magnetic permeability of this 
architecture could be less than one or even less 
than zero. 
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I. INTRODUCTION 
In recent years new concepts in synthesis and 
novel fabrication techniques have allowed the 
construction of structures and composite 
materials that have new response functions do 
not occur in nature. Meta-materials are by 
definition composites, whose properties are 
not determined by the fundamental physical 
properties of their constituents but by the 
shape and distribution of specific patterns 
included in them. Thus for certain patterns and 
distribution, the measured effective 
permittivity εeff and the effective permeability 

µeff can be made to be less than zero. In such 
materials, the phase and group velocity of an 
electro-magnetic wave propagate in opposite 
directions giving rise to fascinating new 
outcomes for a number of laws of physics [1]-
[4]. 

Electromagnetic wave propagation in left 
handed materials (LHMs) has been studied 
both analytically and numerically [5]. In order 
to model LHM numerically, the robust finite-
difference time-domain (FDTD) method has 
been employed. The FDTD method has been 
proved to be one of the most effective 
numerical methods in the study of LHM. Since 
it is a time domain solver, it is convenient for 
dealing with the characteristics of LHMs over 
a wide frequency band. FDTD approach not 
only supports the steady state phenomena 
associated with the frequency domain analysis, 
but also demonstrates the causal transient 
behaviors [6], [7]. 

In fact, LHM are formations of two different 
substructures. One of them addresses the 
electric response and the other one provides 
the magnetic response. There have been many 
investigations and successful experimental 
realizations for both substructures [3], [4]. 
Although most materials exhibiting a good 
electric response can be found at almost any 
frequency from radio-frequencies to the 
ultraviolet frequencies, the magnetic response 
of most materials is limited to low microwave 
frequencies and therefore the relative magnetic 
permeability can be fixed to µr = 1. Any 
magnetization effects tend to abate beyond the 
gigahertz frequency range. It is a real 
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challenge for researchers all over the world to 
create any magnetic activity at optical 
frequencies and, in addition, reaching for 
values µr<1 [3]. Those materials, such as the 
ferrites, that remain moderately active are 
often heavy, and may not have very desirable 
mechanical properties [8]. Some 
ferromagnetic, ferrimagnetic and 
antiferromagnetic materials exhibit some 
magnetic activity at even frequencies of 
hundreds of gigahertz [9]-[11]. But these are 
rare and usually have narrow bandwidths. In 
fact, Landau and Lifshitz gave a very general 
argument as to how the magnetic activity 
arising from atomic orbital currents should be 
negligible at optical frequencies if one could 
neglect the polarization currents [12]. 

This behavior can be explained with the 
conditions for the occurrence of magnetic 
activity. In general, magnetic polarization 
appears from either unpaired electron spins or 
orbital electron currents, and the collective 
excitations of these usually tend to occur at 
low frequencies. The first effect cannot be 
used at optical frequencies as the time scale of 
spins interacting with radiation is much larger 
than the time scales of processes at optical 
frequencies. For the second effect one tries to 
create a closed current that generates a 
magnetic moment opposed to the incoming 
magnetic field. Since we speak of length scales 
of a fraction of the optical wavelength, those 
current rings are very small and so is their 
magnetization [3].  

The challenge to produce a meta-material with 
a considerable magnetic response has resulted 
in the design of spilt-ring and other resonant 
structures. By introducing capacitive elements 
into the system, a rich resonant response can 
be induced [3]. This has become well-known 
subsequently as the split-ring resonator (SRR). 
The SRR works on the principle that the 
magnetic field of the electromagnetic radiation 
can drive a resonant L-C circuit through the 
inductance. This results in a dispersive 
effective magnetic permeability. The SRRs are 
the basis of most of the meta-materials 
exhibiting negative magnetic permeability 
today [3], [8], [13]-[15]. Nonlinear properties 

of two-dimensional arrays of wires and split-
ring resonators embedded into a nonlinear 
dielectric have also been calculated [16]. 
However, it still remains difficult to 
manufacture such small metallic patterns 
without losing the effect due to absorption. 
Many groups have been trying to overcome 
this detrimental effect with resonance but they 
have encountered problems due to high 
absorption [17].  

The present work utilizes second approach. 
We are going to focus on the potential of the 
circulating currents in the current research. 
These currents produce a magnetic moment 
opposing the incident magnetic field. The 
magnetic moment of every single building 
block contributes to the magnetization of the 
entire composite. It is expected that the 
magnetic response of this formation to be 
smaller than the one from a resonant structure. 
The interactions between the constituents have 
been neglected in most of the work on meta-
materials, although they make an important 
contribution to the magnetic properties [18]. 

In order to obtain the macroscopic properties 
of the configuration, we have to analyze the 
microscopic processes of self- and mutual 
inductance of two- and three-dimensional ring 
system. So the self- and total mutual 
inductance of our design has to be calculated 
in the first step. Then, we apply a suitable 
averaging procedure to make appropriate 
predictions about the magnetic response of the 
structure.  

II. THEORY 
As revealed earlier, manipulating the magnetic 
response proves to be the more challenging 
task. As there is a wide range of values for ε 
existing in nature, it is easier to engineer 
composites with the desired electrical response 
compared to the magnetic one. In this paper, 
we disregard the electric response and its 
substructure [19], [20] (relevant researches can 
be found in elsewhere [3]) and concentrate on 
the possibilities to vary the magnetic 
properties of an artificial material. 
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LHMs are strictly distinguished from other 
structured photonic materials, i.e. photonic 
crystals (PCs) or photonic band-gap (PBG) 
materials. In these materials the band-gaps 
arise as a result of multiple Bragg scattering in 
a periodic array of dielectric scatterers. The 
periodicity of the architecture here is of the 
order of the wavelength, and hence 
homogenization in this sense cannot be carried 
out. On the other hand, in LHMs the 
periodicity is by comparison far less important 
and all the properties mainly depend on the 
single scatterer resonances [3]. Thus there is a 
restriction on the dimensions of the building 
blocks of LHM. If we are concerned about the 
response of the system to electromagnetic 
radiation of frequency ω, the necessary 
conditions are defined as follows: 

2 c
D




  (1) 

where c is the velocity of electromagnetic 
wave in the medium and D is the lattice 
constant. If this condition were not obeyed, 
there would be the possibility that internal 
structure of the medium could diffract as well 
as refract radiation. Long wavelength radiation 
is too myopic to detect internal structure and, 
in this limit, an effective permittivity, and 
permeability is a valid concept [8]. If the 
retardation effects are taken into account, there 
will not be any restriction to the long 
wavelength limit. Consequently, the basic 
elements could have a size comparable to the 
wavelength which in turn simplifies the 
fabrication of a construction having a magnetic 
response at optical frequencies [18].  

To start with we consider an array of N 
conducting rings. They are arranged in a plane 
(two-dimensional x-y plane) and their 
symmetry axis is oriented along the z-axis. We 
are going to investigate square lattice 
architecture since it fulfills our requirements 
with respect to flux capture better than other 
structures. Several layers of these flat rings 
may be stacked periodically in a dielectric 
material (three-dimensional) that ensures the 
correct spacing between the layers. This 
spacing determines the packing density of the 

induced magnetic moments, which is as 
important for the response of the construction 
as the strength of the magnetic interactions 
[18], [21], [22]. 

By the accurate calculation of the interaction 
between the rings, we are able to derive the 
expression for the magnetic response of the 
entire system. The effective magnetic 
susceptibility m  can be obtained from the 
averaged macroscopic magnetization M


. The 

details of this calculation have been presented 
in reference [18], [22]. Moreover, modeling 
and numerical calculations for the various 
circular ring arrangements have been 
elaborated there. Here, we are modeling the 
square ring formation. The magnetic flux 
enclosed by a square ring lattice is the most 
due to the fact that there is no gap between the 
squares as depicted in Fig. 1. Therefore the 
interactions between the squares should be 
stronger and lead to a mutual inductance that is 
more negative than for circles. We also 
compare the similar properties of the circular 
and the square ring formation together and 
demonstrate that the latter show more favorite 
magnetic response. 

Because this arrangement is isotropic, we can 
employ the scalar form of the equation for the 
magnetic susceptibility of the structure: 
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 (2) 

where Aring is the area of the ring, v is the 
volume of a primitive cell which holds only 
one ring inside, M  is the total mutual 
inductance, L and R are the self-inductance 
and the resistance of the circuit, respectively. 
In this final expression, the significant role of 
the interaction between the rings becomes 
obvious via the total mutual inductance of the 
composite M . 
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The self-inductance L is always positive. The 
mutual inductance M between two square rings 
can either be positive or negative, depending 
whether we have anti-ferromagnetic or 
ferromagnetic interactions between the rings. 
In general, the absolute value of the mutual 
inductance is not larger than the self-
inductance L M . Hence in Eq. (2), the 

magnetic susceptibility m  is negative and it is 
concluded that the magnetic response of our 
ring lattice is diamagnetic.  

By amplifying the ferromagnetic interactions 
between the rings, it is possible to enhance the 
absolute value of the total mutual inductance 
of the structure. This, in turn, leads to an 
increase of the magnitude of the magnetic 
susceptibility. 

The effective magnetic permeability µeff and 
the susceptibility m  are linked through the 
following relation [23], [24]: 
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 (3) 

Pendry et al. have proposed a structure made 
of an array of long cylinders where one could 
neglect the interaction between them [8]. It is 
possible to reproduce their results by setting 
the total mutual inductance 0M   and utilize 
the expression for the self-inductance of a long 
solenoid. Within this framework µr is always 
in the range 0 ≤µr≤1. As an inference from this 
fact the authors of reference [8] concluded that 
a resonant enhancement is needed to access 
the desired values for the negative 
permeability µr≤0. This diamagnetic screening 
effect has been known for superconducting 
cylindrical shells [23], and a diamagnetic 
effective medium is also obtained with 
percolation metallo-dielectric composites [25]. 

 
Fig. 1. There is no magnetic flux loss in a square 
ring lattice in three-dimension. Any other geometry 
like circles has some flux loss due to the fact that 
there is gap between the building blocks even in the 
most compact arrangement. 

On the other hand, taking the mutual 
inductance into account, as we are doing in 
this work, has major consequences for the 
physical outcome of our proposed architecture 
[18], [22].  

III.  NUMERICAL APPROACH 

A.  Mutual inductance  

Firstly, we describe the calculation of the 
mutual inductance Mij between two 
infinitesimal square thin rings. The coefficient 
Mij between two distinct current-carrying 
circuits is given by the following formula [23]: 
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 
 (4) 

If the circuits are imagined to be negligible in 
cross-section compared to the overall scale of 
both circuits, the following integral is 
obtained: 
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       (5) 

which is known as Neumann’s formula for the 
mutual inductance [23].  

We consider two squares in x-y plane with 
arbitrary position. Note that they should not be 
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tilted against each other nor overlap. 
Otherwise they cannot be put beside each 
other and fill the x-y plane with any void. For 
simplicity, it is supposed that one of the 
squares is located on the reference point. This 
model is indicated schematically in Fig. 2.  

In the graphs, all of the involved parameters 
are scaled with the length of the side of the 
square a. Neumann formula for calculating the 
mutual inductance between these two squares 
has the following form: 
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The results have been delineated in Figs. 3 and 
4. In Fig. 3 the mutual inductance of the 
squares has been shown versus their position 
with respect to each other. An oscillatory 
(repetitive pattern) behavior is observed in this 
figure. This behavior is expected due to the 

symmetry of the mutual inductance between 
squares. In Fig. 4 the mutual inductance is 
depicted against the distance between two 
squares. As the distance increases, the 
magnitude mutual inductance decreases. We 
expect this behavior according to the Neumann 
equation.  

 
Fig. 2. In this figure, all of the necessary parameters 
for numerical calculation of the mutual inductance 
between two infinitesimal thin conducting square 
rings have been shown. 

In the next step, the case of a lattice made up 
from these square rings is being analyzed. For 
such an array, the mutual inductance between 
all the rings should been calculated 
simultaneously. Since we have assumed that 
our problem is linear, the electromagnetic 
fields could be superposed. We must 
accumulate all the contributions from 
neighboring rings relative to the ring of 
reference (ring zero) [18].  

For two-dimension case, we lay square ring 
cells in a flat surface like tiles according to 
Fig. 5. The appropriate coordinate system for 
the square rings is the Cartesian coordinate 
system compared to spherical one for the 
circular rings [18]. The lattice vector R


 

determines the distance between the center of 
the reference ring and the neighboring rings. It 
can be expressed with the unit vectors in i  and 
j  direction: 

 ˆ ˆ
i jR n Di n Dj 


 (7.a) 

2 2 i jR D n n 


 (7.b) 
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where the lattice constant is denoted with D.  

 
Fig. 3. The mutual inductance of two squares 
against their position with respect to each other. In 
this case, the distance between two squares is 
constant (D/a=2) and one of them rotates around 
another one. Its oscillatory behavior is due to the 
symmetry of the mutual inductance between two 
squares. 

 
Fig. 4. The mutual inductance of two conducting 
square rings versus the distance between the center 
of them. In one case, the angle between squares is 
45o and in another one is 90o. When the angle is 
45o, the closest distance is 2 1.4a a . 

Now we can calculate the mutual inductance 
between the reference square ring and the 
other ones individually and take the sum over 
all contributions characterized by different 
vectors R


: 
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where  2
12 ,D

i jM n n  is obtained by the following 

integrations: 
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By adding every contribution from any ring in 
the x-y plane, we derive the total mutual 
inductance 2DM  induced in the reference cell. 
As the arrangement is periodic, one reaches 
the conclusion that choosing another ring of 
reference will also lead to the same result. The 
sum over the different contributions in Eq. (8a) 
is symmetric. When we take a finite amount of 
neighbors into account, the summation 
becomes asymmetric. The total mutual 
inductance depending on the number of 
included neighbors is plotted in Fig. 6. It is 
seen that the sum for the total mutual 
inductance converges for the summation over 
the finite number of the neighboring cells.  

For an array of rings in three-dimension, the 
separation of the rings in the z-direction is 
characterized by the height of H. In contrast to 
the two-dimensional case, ferro- and anti-
ferromagnetic coupling between the rings has 
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to be considered in the three-dimensional 
structures. 

There are different pattern of stacking of 
layers. Here, we only consider two types of 
stacking: ordinary layer stacking (AA 
stacking) and every other layer stacking (AB 
stacking). Accordingly we define two different 
lattice vectors AR


 and BR


.  

 
Fig. 5. Two-dimensional arrangement of the square 
ring cells. The lattice extends in both x and y 
direction. 

 
Fig. 6. The total mutual inductance versus the 
distance between cells. The number of neighbors 
has also been shown. It is seen that the total mutual 
inductance converges enough for 16 neighbors. 

First, as shown in Fig. 7, AA stacking is taken 
into account. We define the three-dimensional 
vector AR


 as follows: 
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The lattice vector for AB stacking, as 
illustrated in Fig. 8, is defined by the following 
relations: 
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The total mutual inductance of the structure 
3DM  is obtained by aggregating all 

contributions of the mutual inductances 
designated by different vectors R


: 
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First, AA stacking is considered. In order to 
obtain 3DM  for this kind of array, only the A-
layer contribution is taken into account: 
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where  3
12, , ,D
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following integrations: 
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Second, AB stacking is considered. To obtain 
3DM  for this type of stacking, both B- and A-

layer contributions should be included: 
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The contribution of B-layers is calculated by 
the following integrals: 
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In calculating the integrals, nk is even for the 
A-layers and odd for the B-layers. 

 
Fig. 7. AA stacking: the centers and vertices of the 
different layers are upon each other. In a word, the 
same layer (in two-dimension) repeats in third 
dimension with the same distance between layers. 

 
Fig. 8. AB stacking: the center of the one layer (B) 
is on the vertices of another layer (A) squares (4 
squares) and vice versa. 

The results are depicted in Figs. 9 and 10. It is 
observed that the distance between the layers 
of conducting rings plays a direct and crucial 
role in the magnitude of the total mutual 
inductance 3DM  for both stacking patterns. For 
the AA stacking, we see regions where 3DM  
becomes even positive when the layers are 
close enough. In these regions, the overall 
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interaction between the rings becomes anti-
ferromagnetic.  

Though it is quite negligible, the total mutual 
inductance for the AB structure is larger in 
terms of magnitude than the AA structure. As 
a result the way of stacking layers is another 
influential factor in determining the total 
mutual inductance 3DM  of the whole 
construction. 

Another interesting behavior is the fact that 
once the layers are separated far enough, the 
way of stacking does not have any influence 
on the magnitude of the mutual inductance 
anymore and the behavior of the both patterns 
is the same [18], [22].  

 
Fig. 9. The total mutual inductance for the AA 
stacking for different distances between the layers. 
When the ratio of this distance H to the lattice 
constant D is less than one (H/D=0.25, 0.5), there 
are regions where the total mutual inductance of the 
whole structure becomes positive. One of these 
points has been indicated. 

 
Fig. 10. The total mutual inductance for the AB 
stacking for different distances between the layers. 
In this layout, there is no region where the total 
mutual inductance becomes positive. Generally, this 
type of stacking leads to more negative mutual 
inductance. 

B. Self-inductance  

In the previous section, we have calculated the 
total mutual inductance of the square ring 
formation in two- and three-dimension. In 
order to obtain the second part contributing to 
the total magnetic flux, we have to consider 
the self-inductance L.  

We must take the finite ring thickness into 
account since the self-inductance of an 
infinitesimal thin conductor with any geometry 
is infinite [12]. It is unlike the procedure of 
calculating the mutual inductance in which we 
have considered the infinitesimal thickness for 
wires. As a matter of fact, any thickness of the 
wire takes space away from the area which can 
be enclosed by the current and in turn 
decreases the captured magnetic flux. This 
case has been proved for the case of the 
circular ring architecture [18]. 

The energy of the magnetic field is stored 
inside and outside the wire. Hence it is 
necessary to calculate two contributions to the 
self-inductance: One part Li generated by the 
interior field and the other part Le caused by 
the exterior field. The second contribution is 
much larger than the first one. This is 
particularly true for our cases that the 
thickness of the wires is much smaller than the 
dimensions of the square. Another 
phenomenon that supports this approximation 
is the skin effect which forces the alternative 
current to stream on the surface of the 
conductor and consequently dwindles the 
magnetic flux inside the conductor. Here, the 
electric current flows mainly at the skin of the 
conductor between the outer surface and a 
level called the skin depth [12]. 

In the relevant literature, derivation of the 
relation for the self-inductance and its error 
has been elaborated for different geometries 
[27],[28]. For deriving the self-inductance due 
to the exterior field Le, we use an indirect 
technique. It has been proved that the self-
inductance of a wire loop could be written as a 
curve integral akin to the Neumann relation 
[27]. Accordingly, the expression for the 
external self-inductance of the square ring can 
be written as follows: 
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In the above equations, t represents the 
thickness of the wire. The error of this 
evaluation is of the first order in the wire 
thickness (square has four sharp corners) [27]. 
The function Le is illustrated in Fig. 11. In this 
figure, it is demonstrated that as the thickness 
decreases, its self-inductance increases.  

C. The Magnetic Permeability 

Firstly, we describe the calculation of the 
mutual inductance Mij between two 
infinitesimal square thin rings. By obtaining 
the total mutual and self inductance of the 
structure, it is possible to present the 
macroscopic magnetic response by calculating 
the magnetic permeability μ derived by Eq. 
(3).  

In this work, it is presumed that the resistance 
of the wire material is negligible, i.e. R=0. So, 
the relative magnetic permeability μr is 
reduced to the following equation: 

2

0

1
 1 1 ring

r m

A

v L M
     


 (15) 

By considering AB stacking, it is inferred that 
the appropriate lattice for this pattern is the 
bod-centered tetragonal (BCT) which its 
primitive cell volume is equal to D2H. 

 
Fig. 11. The variation of the self-inductance of a 
square ring versus its thickness. The specified point 
is the value of the thickness and corresponding self-
inductance used for succeeding calculations. 

By knowing the area of the square ring 
Aing=a2, it is time to insert all the necessary 
ingredients in the equation above and end up 
with the following expression for the relative 
permeability μr: 
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 (16) 

where R is the ratio of the height of the unit 
cell H to the lattice constant D, i.e R=H/D. As 
mentioned earlier, all the lengths are scaled 
with the side of the square ring a. This scaling 
is employed in the final outcomes, too.  

In Figs. 12 and 13 the relative permeability μr 
is plotted versus the lattice parameter for 
different heights of the unit cell H. It is 
noticeable that a dense packing of the cell 
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layers and the cells themselves reduces the 
relative permeability μr (its magnitude grows).  

 
Fig. 12. There relative magnetic permeability for 
the AA stacking for different distances between the 
layers. Negative values for relative permeability up 
to -2.5 can be attained by close-packing of the cells. 

 
Fig. 13. There relative magnetic permeability for 
the AB stacking for different distances between the 
layers. The behavior of this pattern is very similar 
to the AA stacking (their difference is negligible). 

In order to lessen the relative permeability μr, 
the denominator in Eq. (16) should be 
decreased as much as possible. By focusing on 
the denominator of Eq. (16), it is deduced that 
three ratios determine permeability: R=H/D, 
D/a and (L+ M )/a. All of these factors can be 
reduced by low packing of the building cells. 
As the ratios H/D and D/a lesson, the sum 
(L+ M )/a also minimizes due to the fact that 
total mutual inductance becomes more 
negative and becomes comparable to self-
inductance. Albeit there are regions for which 
the mutual inductance becomes positive (anti-
ferromagnetic response for the AA stacking 
illustrated in Fig. 9, the magnetic permeability 
is again reduced when the layers are stacked 
close enough. Thus, it is of great importance to 
select the most appropriate values for these 

parameters to reduce the magnetic 
permeability a much as possible. 

IV. CONCLUSION 
We proposed the macroscopic properties of the 
conducting square ring configuration. We 
focused on the potential of the circulating 
currents in the current research. We analyzed 
the microscopic processes of self- and mutual- 
inductances of two- and three-dimensional 
ring systems. So, the self- and total mutual 
inductance of our design were calculated in the 
first step. Then, we applied a suitable 
averaging procedure to make appropriate 
predictions about the magnetic response of the 
structure. 
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