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ABSTRACT— We consider the interaction of 
quantum light with an ideal semiconductor 
microcavity. We investigate photon statistics in 
different conditions and the presence of 
detuning and exciton-exciton interaction. We 
show that in the resonant interaction and 
absence of the exciton-exciton interaction, the 
state of the whole system can be considered as 

 2su  coherent state. According to our results, 

it turns out that photon statistics strongly 
depends on the initial state of the system. It is 
found that it is possible to generate squeezed 
light in the presence of the exciton-exciton 
interaction. 
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I. INTRODUCTION 

The quantum state properties of the light 
emitted from the optical cavities containing 
one or more two-level atoms coupled to a 
single mode of electromagnetic field have 
been investigated in the context of cavity 
quantum electrodynamics (cavity QED) [1,2]. 
Beyond atomic physics, cavity QED is now a 
subject of much interest in solid state physics 
[3, 4] and references there in. Theoretical and 
experimental study in the context of solid state 
cavity QED brought the proof of squeezing in 
semiconductor microcavity with quantum well 
[5, 6].  

Besides the coherent interaction between the 
excitons and photons, nonlinear interaction 
between the excitons plays an indispensable 
role on the coupled exciton-photon system. It 

is well-known that in the case of the low 
density, the excitons are approximately treated 
as ideal bosons which obey Bose statistics [7]. 
This regime is known as harmonic 
approximation, and in this regime the 
interaction of the exciton and electromagnetic 
radiation is completely linear. Theoretical 
calculation of the light intensity gives a good 
agreement with observed time-domain 
emission from the microcavity [8]. But when 
the density of excitons becomes relative 
higher, the excitons are no longer the ideal 
bosons. One way of dealing with this problem 
is to put these deviations from boson into 
effective interactions between the hypothetical 
ideal bosons as the exciton operators as still 
presented by bosonic operators [9]. These 
interactions consist of exciton-exciton 
interaction and phase space filling interaction. 
These interactions are naturally nonlinear, and 
it has been shown that these complex 
nonlinear interactions lead to the parametric 
amplification [10] and the generation of 
squeezed light in semiconductors [11]. 

By considering the exciton as ideal boson, we 
can consider the interaction of light with 
excitons in the framework of coupled-boson 
representation [12], which is a correspondence 
between two linear oscillators and an angular 
momentum oscillator. Coupled oscillators 
system has been extensively studied in 
quantum mechanics. We will investigate the 
interaction of the exciton and photon in a 
microcavity by this model. This model is 
extensively used for studying physical 
properties of exciton-photon interaction in 
semiconductor microcavity such as excitonic 
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collapse and revival [13], and physical effects 
of some nonlinear interaction between 
excitons [14]. 

The effects of nonlinear interaction on 
fluorescence spectrum of exciton had been   
considered [14]. The deviation of excitons in 
high density regime from ideal bosons was 
investigated by the concept of q-deformed 
excitons [15]. Photon statistics of light in 
microcavity was considered by investigating 
damping effects [16]. 

In this paper we investigate the exciton-
exciton and detuning effects on photon 
statistics of exciton emission, in the absence of 
damping effects in the context of coupled-
boson representation. We show that in the case 
of the resonant interaction and absence of the 
exciton-exciton interaction, the dynamical 
state of the total system can be considered as 
an  2su coherent state. We illustrate that the 

dynamical behavior of this system depends 
strongly on the initial state of the system.  

II. THEORETICAL MODEL 

We consider a system consisting of a 
microcavity containing a semiconductor 
quantum well embedded in a high-Q cavity. 
We assume that the cavity and the quantum 
well are both ideal, and they are in an 
extremely low temperature situation, so that 
we can neglect all damping interaction due to 
the temperature fluctuations and phonons. The 
quantum well interacts with cavity field via 
exciton. The exciton and photon modes are 
quantized along the direction normal to the 
microcavity. Due to the translational 
invariance in the plane of microcavity, the 
photon only be dressed by the exciton with the 
same in-plane wave vector. In this model other 
exciton modes can be treated as a thermal bath 
for main exciton mode.  

To simplify the model we will consider only 
one photon mode with wave vector k 0


 and 

frequency c which interacts with the lowest 
exciton mode, i.e., 1s  exciton. Combining the 
above considerations and neglecting all 
damping processes, we can write the following 

Hamiltonian for the coupled exciton-photon 
system [11, 17]: 

† †ˆ ˆˆ ˆ ˆH= c exa a b b   † †ˆ ˆˆ ˆg a b b a  † †ˆ ˆ ˆ ˆAb b bb  (1) 

where  †ˆ ˆb b  is annihilation (creation) operator 

of excitons with frequency  †ˆ ˆ,ex a a  is 

annihilation (creation) operator of the cavity-
field. Both of these operators obey Bose 

statistics, i.e. † †ˆ ˆ ˆ ˆ, , 1b b a a        . As pointed out 

before, we describe deviation of excitons from 
bosonic commutation relation by an effective 
interaction between them. The third term in the 
Hamiltonian (1) stands for the exciton-photon 
interaction with coupling strength g which is 
assumed to be a real parameter. The last term 
describes the exciton-exciton interaction due 
to the Coulomb interaction. We have neglected 
photon-exciton saturation effect (phase-space 
filling) in this Hamiltonian. It is shown that 
this effect gives rise to small corrections as 
compared to exciton-exciton interaction [18]. 
In this Hamiltonian A is the nonlinear 
interaction coupling constant related to the 
exciton-exciton interaction. As is clear, the 
Hamiltonian (1) shows a coupled-boson model 
considered by Schwinger [12]. Dynamical 
evolution of this system can not be calculated 
in an exact way due to the presence of the 
nonlinear exciton-exciton interaction. 
According to the similarity of this model with 
coupled-boson model, we can study the 
dynamics of system by using Schwinger’s 
angular momenta [12]. Angular momentum 
operators can be constructed as 

 † † †1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ,
2zj b b a a j b a    and † ˆˆ ˆj a b  . The 

Casimir operator of the  2su  algebra is 2ĵ  

which can be written in this model as 

2
ˆ ˆ

ˆ 1
2 2

N N
j

 
   

 
, where the total excitation 

number operator † †ˆ ˆˆ ˆ ˆN a a b b   is a constant of 
motion. As we know, the representation space 
of the  2su  group is spanned by the 

simultaneous eigenstates of 2ĵ  and ˆ
zj  which 

are given by: 
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   
   

† †ˆ ˆ
, 0 ,

! !

j m j m
b a

j m
j m j m

 


 

 (2) 

which is the direct product of two number 
states with j m  exciton in the quantum well 
and j m  photons in the cavity-field. In terms 

of the angular momentum operators ˆ
zj  and ĵ , 

the Hamiltonian (1) can be expressed as  

   
2 2

2

ˆ ˆ ˆ2 1 4

c ex z

z z

N
H j g j j

A j j j

         

         

   

 

2
2

2ˆ1 1 4 ˆ1 1 4
,

4 2

j
j

         



 (3) 

where c ex     denotes the detuning 
between the photon frequency and the 
transition frequency of exciton system. As is 
clear, the nonlinear interaction is diagonal in 
the basis of ,j m . First, we assume that 

exciton system is so dilute that we can 
consider excitons as a free system and we 
neglect the interaction between excitons. Then 
we consider the following Hamiltonian:  

   
ˆ

ˆ ˆ ˆ ˆ .
2 c ex z
N

H j g j j          (4) 

In the interaction picture we have 

 int
ˆ ˆ ˆ .i t i tH g j e j e  

    (5) 

In the following we shall consider the 
dynamical behavior of the system in the two 
different conditions: on-resonant and off-
resonant interactions. 

A.  On-resonant interaction of exciton and 
light 
If 0  , then the dynamical evolution of the 
system is determined by the following 
Hamiltonian  

 int
ˆ ˆ ˆ .H g j j    (6) 

The time evolution of the above Hamiltonian 
is given by  

   ˆ ˆ ˆ ˆˆ ,
igt j j j jU t e e    

     (7) 

where igt    is a measure for the strength of 
the photon-exciton interaction. We assume at 

0t  , the cavity-field be in a number state n , 

the quantum well be in its ground state, i.e. 
exciton system be in vacuum state 0ex . The 

initial state can be written in terms of the 

eigenstates of 2ĵ  and ˆ
zj  as ,

2 2

n n
 . From the 

group theoretical point of view this state is a 
highest weight state for  2su  representation, 

and the time evolution operator (7) is similar 
to the displacement operator of the  2su  

group. By the action of the time evolution 
operator (7) on the initial state of the system 
we can construct an  2su  coherent state [19] 

  ˆ ˆ
, .

2 2
j j n n

t e 


    (8) 

The generalized coherent states associated 
with the unitary representations of the  2su  

algebra or atomic coherent states, are 
parameterized by the two polar angles in the 

form  , 0 ,0 2
2

ie           [20], which 

determine the rotation of the state of the 
system on the Bloch sphere. In the present 
case these angles are determined by   which 
in turn the strength of interaction determines 
the rotation of system. Following the approach 
given in [21] for disentangling the time 
evolution operator, we can write the state (8) 
as: 

      ˆtancos , .
2 2

i gt jn n n
t gt e    (9) 

Thus, the state of the total system is an  2su  

coherent state. This state contains information 
of exciton and photon system. In order to 
investigate the temporal behavior of the 
photon statistics, we should obtain the 
quantum state of the photon field. The density 
operator of the photon field is given by 

     2

0

cos tan .
n

n j
f

j

n
t gt gt n j n j

j




 
   

 
 (10) 

In the following we consider some features of 
quantum statistics properties of the photon 
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field: the quadrature squeezing, photon 
counting statistics and purity. Squeezing is 
defined by reduced quantum fluctuations, 
below those for the vacuum state, in one 
quadrature phase amplitude of the field [22]. 
Quadrature operators are defined as:  

 
 

†
1

†
2

1ˆ ˆ ˆ ,
2
1ˆ ˆ ˆ .
2

i i

i i

X ae a e

X ae a e
i

 

 





 

 
 (11) 

Then, the squeezing condition is defined as 

     2 1
0 1 2 ,

4l lS X l or       (12) 

where 

 2† 2 2
1 ˆ ˆ ˆ ˆ( ) 2 2 Re 4 Re ,i iS a a a e a e           

 

 2† 2 2
2 ˆ ˆ ˆ ˆ( ) 2 2Re 4 Im ,i iS a a a e a e           

 

 (13) 
The temporal evolution of the S1 is plotted in 
Fig. 1. As shown, in this condition the 
radiation field does not exhibit squeezing. 
From a theoretical point of view squeezed 
states result from nonlinearities. The physical 
mechanism of their generation should 
therefore be sought in nonlinear interactions 
such as second [23] or higher harmonic 
generation [24] or parametric amplification 
[25]. 

 
Fig. 1. Temporal evolution of S1 versus gt for initial 
photon number n=10. 

Thus we expect that in this linear interaction 
between the exciton-photon, the cavity-field 
does not exhibit quadrature squeezing.  

Sub-Poissonian statistics is measured with the 
Mandel parameter [26], that is defined as:  

22ˆ ˆ
1.

ˆ

n n
M

n


   (14) 

This parameter vanishes for the Poissonian 
distribution, is positive for the super-
Poissonian distribution (photon bunching 
effect), and is negative for the sub-Poissonian 
distribution (photon anti-bunching effect). Fig. 
2 shows the dynamical evolution of the 
Mandel parameter. As shown, the Mandel 
parameter exhibits sub-Poissonian statistics 
during the photon-exciton interaction. 
Apparently, this quantity oscillates between 0  
and -1, the values of Poissonian statistics and 
number state, respectively. This shows that 
during the dynamics the field state will reduce 
to the number state.  

 
Fig. 2. Temporal evolution of Mandel parameter 
versus gt for initial photon number 10n  . 

Now, we consider the purity of photon field 
during its time evolution. We consider the 
linear entropy as a measure of the stability of 
the initial pure state, i.e.,  

  21 Tr .fP t 
 (15) 

In this sense, we say that an initial pure 

quantum state is stable if     2Tr 1 0f t P    

for all times. This parameter can be considered 
as a measure for quantum entanglement. In 
fact, the time evolution of the field entropy 
reflects the time evolution of the degree of 
entanglement between the cavity-field and the 

exciton [27]. It is clear that   2Tr f t  takes on 

a maximum value of 1 if the sub-system cavity 
field is in a pure state; it then follows that 
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0P   for a simple product (disentangled) 
state. Fig. 3 shows the temporal behavior of 
this parameter. It is clear that purity of the 
system will appear periodically during the time 
evolution. As shown, by increasing the n , the 
number of initial photons, this parameter will 

increase. The parameter   2Tr f t  takes on its 

minimum value 1 M , where M  is a number of 
accessible orthogonal states of the cavity-field. 
Then increasing the number of the initial 
photons causes the purity P increased. In this 
case the cavity-field will recovered its initial 
purity during the interaction periodically.  

 
Fig. 3. Temporal evolution of purity parameter 
versus gt for different initial photon number. 
Dashed line, long dashed and solid line 
,respectively, correspond to 10, 20n   and 

100n  . 

As shown, the photon counting statistics and 
purity of cavity-field have an oscillatory time 
evolution. The initial purity of the cavity field 
is achieved when the Mandel parameter 
correspond to a coherent state  0M   or a 

number state  1M    of the field. According 

to the physical model, a linear interaction 
between the exciton-photon without damping 
effects is considered. Conformably to this 
model the quantum well and cavity field 
exchange their excitations periodically and 
hence, the exciton population will experience 
an oscillatory evolution. The oscillations in the 
photon counting statistics relates to the 
periodic evolution of the exciton population. 

III. OFF-RESONANT INTERACTION OF 

EXCITONS WITH LIGHT 

In the case of 0  , the Hamiltonian in the 
interaction picture is given by (5). Due to the 
explicit time dependence of Hamiltonian, and 
the fact that Hamiltonians at different times do 
not commute with each other, the time 
evolution operator may be written as:  

   int

0

ˆ ˆ ˆexp ,
t

U t T i H t dt
 
   
 
 
  (16) 

where T̂  is the time ordering operator. We use 
a perturbation approach to consider the 
dynamics of the system under consideration. 
By using the Feynman disentanglement 
theorem [28], we can write the time evolution 
operator (16) as: 

    

    2
0

ˆ ˆˆexp

ˆ ˆ ˆexp 2 ,
t

i t
z

U t ig t j T

ig j ig t j ig t j e dt



 




 

 

 
         

 


(17) 

where    1i ti
t e   


. Now we expand the 

time ordered exponential up to third order of 
coupling constant. For determination of the 
quantum state of the system at any time t , we 
consider the action of time evolution operator 
 Û t  on an initial state of the system. We 

choose the initial state of the system as before: 
the cavity-field in number state n  and the 

exciton system in vacuum state. Then the state 
of the total system at any time 0t   is given 
by: 

     

   

2 ˆ

2

3 ˆ

3

1 1 ,
2 2

2
sin , 1 ,

2 2

ig t ji t

ig t j

ng n n
t c i t e e

ig n n
c i t t ne





 







 
       

  

     

(18) 

where c is the appropriate normalization 
constant of this state. In this case, due to the 
absence of nonlinearity in the dynamics as 
pointed out before, this state does not exhibit 
quadrature squeezing. 

The dynamical evolution of the Mandel 
parameter is shown in Fig. 4. As is clear in all 
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times the cavity-field obey the sub-Poissonian 
distribution. This plot shows that field as a 
sub-system will pass through some number 
states periodically. On the other hand, for the 
large values of detuning in comparison with 
the coupling constant, field statistics is sub-
Poissonian. With the decreasing of the 
detuning the field statistics approaches to the 
Poissonian statistics and at specific times the 
super-Poissonian statistics.  

 
Fig. 4. Mandel parameter in the presence of 
detuning versus dt t  . Dashed line, long dashed 

line and solid line, respectively, correspond to 
0.5, 1g g     and 2g   . For all figures 

10n  . 

 
Fig. 5. Purity parameter in the presence of detuning 
versus dt t  . In this plot 10n  . Dashed line, 

long dashed line and solid line, respectively, 
correspond to 0.5, 1g g     and 2g   . 

The plots of purity parameter (15) in this case 
are depicted in Fig. 5. As shown, for the small 
values of g   it is more probable for the 
photon field to obtain its initial purity, while 
for finite vales of this ratio, the purity never 
becomes zero. This intimates that when the 
detuning is large, there is a tendency of the 
cavity-field to preserve its initial purity. On the 

other hand, when the ratio g   is large, the 
oscillatory behavior of purity becomes more 
apparent.  

IV.  PHOTON STATISTICS IN THE PRESENCE 

OF EXCITON-EXCITON INTERACTION 

In this section we shall consider the influence 
of exciton-exciton interaction on the photon 
statistics. By taking into account the exciton-
exciton interaction, the total Hamiltonian of 
the system is given by (3). The last term in this 
Hamiltonian relates to the exciton-exciton 
interaction with coupling constant A. This 
nonlinear interaction is diagonal in the basis of 

,j m  (direct product of exciton and photon 

number states). Due to this property we 
consider an interaction picture with respect to 
the free part of the Hamiltonian and diagonal 
exciton-exciton interaction. Therefore we 
obtain the exciton-photon interaction 
Hamiltonian in the interaction picture with 
respect to the exciton-exciton induced 
evolution  

0 0
ˆ ˆ

int
ˆ ˆ ,iH t iH tH e H e  (19) 

where  ˆ ˆ ˆH g j j     and 

  2 2
0

ˆ
ˆ ˆ ˆ ˆ ˆ2 1 4

2 c ex z z z
N

H j A j j j               
 

2
2

2ˆ1 1 4 ˆ1 1 4
.

4 2

j
j

          



 (20) 

By using the  2su  algebra the above 

Hamiltonian in the interaction picture is 
written as 

     2ˆ2 1 4ˆ1 2

int
ˆ ˆ z

iAt jiAt j i tH t g j e e e
    




 


 

   2ˆ2 1 4ˆ1 2ˆ .z
iAt jiAt j i tj e e e

    



 


 (21) 

In this equation 2ĵ  is the Casimir operator of 
the  2su  algebra, and c ex     is the 

detuning parameter. This Hamiltonian can be 

written in the form of  int
ˆ ˆ ˆi t i tH g j e j e  

    , 

where we introduce the generalized  2su  

ladder operators as: 
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   

   

2

2

2 1 41 2

2 1 41 2

,

,

z

z

iAt jiAt j

iAt jiAt j

j j e e

j j e e

    
 

    
 

 

 





 

 
 (22) 

These operators are similar to the definition of 
generalized f-deformed operators [29], which 
are constructed from the ordinary ladder 
operators and a multiplicative function of 
constants of motion. In our case the operator 

2ĵ  is a constant of motion. However, the 
generalized operators (22) have the same 
commutation relation as ordinary  2su  ladder 

operators: 

ˆ ˆ ˆ, 2 .zj j j       (23) 

The time dependence of the Hamiltonian (21) 
is due to the presence of the detuning and the 
exciton-exciton interaction. By neglecting the 
detuning  0   and the exciton-exciton 

interaction  0A  , this Hamiltonian reduces to 

the Hamiltonian (6). To consider the dynamics 
of the system, we use a perturbation expansion 
of the corresponding time evolution operator. 
Up to the second order of perturbation the time 
evolution operator can be written as: 

   int

0

ˆ ˆ1
t

U t i H t dt       int int

0 0

ˆ ˆ .
t t

H t dt H t dt



       

 (24) 
We choose the initial state of the system as 
before: the cavity-field is prepared in a Fock 
state n  and the quantum well in its excitonic 

ground state. The quantum state of the system 
at time t  is given by: 

     1 2, , 1
2 2 2 2

n n n n
t c A t A t


    


 

 3 , 2 ,
2 2

n n
A t


   


 (25) 

where c is a normalization constant, 

     
12 2 22

1 2 3c A t A t A t


    
 

, and the 

coefficients  1A t ,  2A t  and  3A t  are, 

respectively, given by: 

 

1,
2

2

1 2 2

1, 1
2

1

1,
2

n
iAt f ln

iAt f l e
g

A t n
nA f l

   
      

  
   
 

, 

 
1,

2

2
1

,
1,

2

n
iAt f l

g e
A t n

nA
f l

    
  


   
 

 

   
2

3 2
2 1 1,

2

g n
A t n n f l

A

        
 

 

2, 1,
2 22,

2

n n
iAt f l f ln

f l e

             
        

 
 

2,
22, 1, /

2 2

n
iAt f ln n

f l f l e

   
 


                   

2, 1, 1,
2 2 2

n n n
f l f l f l

                          
 

2, ,
2

n
f l

    
 

 

which  , 2 3f x l x l A     , where l  is the 

number of photons in the initial state. By using 
this state we can determine photon statistics.  

 
Fig. 6. Squeezing in the presence of detuning and 
exciton-exciton interaction versus At. In this plot 

10n   and 10g A  . Dashed line and solid line, 

respectively, correspond to 20A   and 

40A  . 

Fig. 6 represents the quadrature squeezing in 
the photon field. As shown, in this condition 
the state does not show quadrature squeezing. 
However, there is a difference between this 
result and previous one. In the absence of 
exciton-exciton interaction, Fig. 1, the 
quadrature squeezing exhibits an oscillatory 
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behavior, while in the presence of the exciton-
exciton interaction the variation of squeezing 
parameter becomes stable. It is apparent that 
the change of detuning parameter will alter the 
period of oscillations of quadrature squeezing. 

 
Fig. 7. Mandel parameter in the presence of 
detuning and exciton-exciton interaction versus At. 
In this plot 10n   and 10g A  . Dashed line, 

long dashed line and solid line, respectively, 
correspond to 10A  , 20A  , and 

30A  . 

 
Fig. 8. Purity in the presence of detuning and 
exciton-exciton interaction versus At. For all plots 

5n   and 20g A  . For dashed line, long dashed 

line and solid line we have, respectively, 10A  , 

20A   and 30A  . 

Fig. 7 shows dynamical evolution of the 
Mandel parameter. As shown, the photon-field 
shows sub-Poissonian statistics, while the 
oscillatory behavior of this parameter is 
suppressed and eventually the Mandel 
parameter is stabilized at an asymptotically 
value. Similar to the squeezing case, the 
detuning affects the periods of oscillation. It is 
apparent that in this case the cavity field 
statistics leads to the number state statistics. In 
Fig. 8 we have plotted the purity. This figure 

shows that the amplitude of oscillations is 
relatively small and the exciton-exciton 
interaction prevents the oscillation between 
pure and mixed states. After some time this 
parameter becomes stable. In the case of 
specific initial conditions, the exciton-exciton 
interaction prevents oscillations in photon 
statistics and it tries to make photon statistics 
stable.  

To achieve a more clear insight to the effects 
of the exciton-exciton interaction and initial 
state on the photon statistics, we consider 
another initial state for the system. We assume 
at 0t   the quantum well be in the ground state 
and the cavity field be in a coherent state  . 

Then the initial state of the system is given by 

 
2

20 ,
2 2!

n

n

n n
e

n





  . By the same 

procedure as before we can derive the 
quantum state of system at time t. The 
quadrature squeezing is plotted in Fig. 9 for a 
fixed value of the detuning parameter and 
coupling constant and definite values of the 

intensity of initial photon coherent state, 2 .  

 
Fig. 9. Squeezing in the presence of detuning and 
exciton-exciton interaction versus At for initial 
coherent state. In all plots, 20g A   and 

20A  . Dashed line, long dashed line and solid 

line, respectively, corresponding to intensity of 

initial field as 
2

2.5  , 
2

4   and 
2

9  . 

As shown, when the initial intensity of the 
field is small enough, the state exhibits 
squeezing. In contrast to the previous cases, in 
this case we can generate squeezed light. As 
mentioned before, theoretical and 
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experimental schemes for generation of 
squeezed state are based on nonlinear 
interactions. In the presence of the exciton-
exciton interaction, this interaction insures the 
nonlinear nature of the interaction and hence, 
the cavity-field exhibits quadrature squeezing. 
On the other hand, when we choose the initial 
state of the cavity-field as a number state, the 
cavity-field did not show quadrature 
squeezing. This is related to the statistical 
properties of the number states which they do 
not show quadrature squeezing. Then we 
consider the effects of detuning while the 

intensity of initial coherent state, 2 , is 

constant. In Fig. 10 the plots of squeezing 
parameter for different values of ratio A  are 
depicted. As shown, with increasing the value 
of A  the oscillation of squeezing becomes 
more pronounced and it becomes stable more 
rapidly. We see that by decreasing the value of 
detuning the quadrature squeezing occurs 
more frequently. 

 
Fig. 10. Squeezing in the presence of detuning and 
exciton-exciton interaction versus At for initial 
coherent state (detuning effects). In all plots, 

20g A   and 
2

2.5  . Dashed line, long 

dashed line and solid line, respectively, correspond 
to 10A  , 20A   and 30A  . 

V. CONCLUSION 

In this paper, we considered the interaction of 
a single-mode cavity-field with a quantum 
well in an ideal microcavity in the absence of 
damping effects. We have seen, in the case of 
resonant interaction and absence of the 
exciton-exciton interaction, the state of the 
total system can be considered as a  2su  

coherent state. Then we take into account the 

influence of the detuning and the exciton-
exciton interaction on the photon statistics. We 
have found that when the initial state of the 
cavity-field is prepared in a Fock state, there is 
no quadrature squeezing, while with choosing 
the initial state as a coherent state with small 
intensity, the quadrature squeezing occurs in 
the course of the time evolution. On the other 
hand, we showed that by changing the 
detuning parameter, we can maintain 
squeezing in more time intervals. Also, we 
considered the exciton-exciton interaction and 
its effects on the photon statistics. We showed 
that this interaction makes the photon statistics 
stable and suppresses its oscillatory behavior. 
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